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CHAPTER 1 

Introduction

“Efficient object recognition requires a 
mechanism whereby a set of two or more 
stimulus inputs are allocated to the same 
perceptual category. For example, we have the 
capacity to identify an object from an infinite 
variety of orientations, distances and 
luminances” (Warrington, 1982, p. 22).

Humans routinely exhibit real-time, highly accurate three-dimensional object 

recognition under widely varying illumination conditions. However, little is 

known of how humans are able to perform so well under so much variation in 

lighting. At the same time, recent progress in computer vision has produced 

recognition models that are quite good at compensating for lighting variations 

during object recognition (Hallinan, 1994; Belhumeur, Hespanha, & Kriegman, 

1997; Belhumeur and Kriegman, 1998). These models use specific algorithms 

that compensate for changes in illumination across objects, and perform quite 

well at recognizing objects under lighting directions similar to previously learned

1
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2

illumination directions. While the algorithms used by these models are well 

understood, their performance when trained on a variety of different 

illuminations is unknown. One method of investigating the ability of humans to 

perform accurate object recognition under changes in illumination is to examine 

the object recognition performance of both humans and computational models 

under a variety of lighting conditions. The goal of such an undertaking is to 

determine if illumination really plays a role in human object recognition, and if 

so, to determine how it is represented.

Evidence from previous behavioral research suggests that human object 

recognition is dependent on the lighting conditions in a scene, much like the 

dependence shown for recognition under varying object viewpoints. 

Neuropsychological and neurophysiological studies indicate neural systems 

that may be involved in object recognition under novel and ambiguous lighting 

conditions. Results from these various sources indicate that a certain type of 

model for object recognition is more likely than others: an image-based model. 

Several image-based computer vision models suggest a mechanism by which 

object recognition under illumination variations may be performed. These 

models show simulated behavior that appears lighting dependent. The present 

study compares performance data from human psychophysical studies and 

simulations using an image-based computer vision model under the same 

lighting conditions to answer the question of the function of lighting in human 

object recognition, as well as to explore the larger issues that arise when 

attempting such a comparison.
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What is the Role of Illumination in Human Object Recognition?

Invariant three-dimensional object recognition has been an elusive goal in 

computer vision, and an ill-understood phenomenon in human vision. Given the 

significant attention paid to this problem, the inability to find a generic solution is 

remarkable. At the same time, such a solution appears possible in that 

biological vision systems are capable of highly accurate object recognition 

across a wide range of image variability. Indeed, the apparent ability of humans 

to recognize objects in an invariant manner is often held up as an existence 

proof for the ultimate solvability of this problem.

Changes in object orientation, or viewpoint, and changes in illumination on 

objects are two of the most obvious sources of variability present in images of 

objects, in fact, the visual system can recognize hundreds-of-thousands of 

unique objects at a large number of viewpoints. This remarkable ability to easily 

recognize objects regardless of orientation has been a subject of investigation 

for many years. Studies using humans (e.g., Rock & DiVita, 1987) and non­

human primates (e.g., Logothetis & Sheinberg, 1996) have attempted to answer 

how a biological vision system compensates for viewpoint changes. Related to 

this question is whether the internal representation of objects is independent or 

dependent on the viewpoint of the observer to the objects. Two classes of 

models have arisen in order to explain how humans might represent objects 

internally: viewer-centered (e.g., Poggio & Edelman, 1990) and object-centered 

(e.g., Biederman, 1987; Ullman, 1989).
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With respect to the problem of recognizing objects across multiple 

viewpoints, whether through object rotations or observer movement, the 

standard approach for many years in computer vision assumed that viewpoint 

invariance was both desirable and attainable using recovered three- 

dimensional part-based models (Binford, 1971; Marr & Nishihara, 1978). 

Motivated in part by this stance, the most well known theory of biological object 

recognition has posited that objects are represented as collections of three- 

dimensional volumes (“Geons”; cylinders, cubes, etc.) that may be recovered in 

a viewpoint-invariant manner (Biederman, 1987). In support of this theory, its 

major proponents have claimed that human recognition performance is 

“typically” viewpoint invariant (Biederman & Gerhardstein, 1993).

Although there are conditions where this is true, they are hardly typical and 

only obtained by carefully following a strict “recipe” (Tarr, Williams, Hayward, & 

Gauthier, 1998). For example, one type of experiment examined how observers 

generalized from one view of a simple three-dimensional volume, a Geon, to 

new views of the same Geon (Hayward & Tarr, 1997; Tarr et al., 1998). Despite 

Geons being very regular and highly distinctive from one another, across a 

variety of tasks and image conditions, and with few exceptions, recognition of 

familiar Geons in new views was found to be viewpoint dependent That is, 

observers took progressively longer and were less accurate in recognition as a 

function of the rotation distance from the original view of the Geon. Similarly, 

“paperclip” objects (Poggio & Edelman, 1990; Bulthoff & Edelman, 1992) with 

single Geons inserted in the center position were also recognized in a
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viewpoint-dependent manner. Moreover, adding more Geons, something that 

theoretically should have made the objects more distinctive from one another 

(Hummel & Biederman, 1992), actually dramatically increased the magnitude of 

viewpoint dependency (Tarr, Bulthoff, Zabinski, & Blanz, 1997).

Similar to changing the orientation of an object with respect to the viewer, 

the direction of illumination on an object can impact how well the object is 

recognized. Although Marr (1982) suggested that changes in illumination 

direction are only seen as changes in light source direction and not as an 

orientation change, Troje and Siebeck (1998) demonstrated that changes in 

illumination direction can provide cues that appear as changes in object 

orientation, which greatly affect an object’s appearance and thus the ability to 

recognize it. Furthermore, when measured in terms of pixels, illumination 

changes account for the greatest image variance in measuring the differences 

between images of faces. In fact, illumination changes account for even more 

image variance than the variance described by individual identity or changes in 

viewpoint between images (Pentland, 1991; Moses, Adini, and Ullman, 1994). 

In order to accurately recognize an object under varying illumination conditions, 

both humans and computer vision models must compensate for the large 

variation caused by these lighting changes across images of the object. As with 

viewpoint invariance, there also are two types of models proposed to account 

for the ability to recognize objects under variable illumination conditions: edge- 

based (e.g., Biederman, 1987; Hummel & Biederman, 1992) and image-based 

(e.g., Hallinan, 1994; Shashua, 1997; Belhumeur & Kriegman, 1998).
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Edge-based Models. The key idea behind these models is found in the 

hypothesis that object representations are edge-based (e.g., Marr, 1982; 

Biederman, 1987). The belief is that the edges of an object are stable across 

variations in the image, and that from such canonical edge descriptions 

completely invariant, three-dimensional object models can be derived. These 

edge-based models discount the surface characteristics (i.e., color, texture, 

illumination) of an object as secondary to recognition since the information 

about the object’s shape is completely contained in the presumably stable edge 

maps. In support of the edge-based hypothesis, Biederman and Ju (1988) 

found that subjects showed no difference in performance for naming objects 

displayed both as line drawings and as color photographs. The authors 

believed that the color and texture elements of the objects shown in the 

photographs, but necessarily missing from the line drawings, did not contribute 

to the subjects’ performance since no representation of these characteristics 

was ever accessed. Following up this work, Hummel and Biederman (1992) 

posited a neural network model for invariant object recognition under changes 

in viewpoint that used a structural description that was temporally bound, i.e., 

the model joined component parts when they were needed. The structural 

description in this model was edge-based and the authors again discounted the 

effects of illumination on the surface of the object, assuming that the surface 

properties of the object in question were easily described by its line drawing. In 

summary, edge-based models predict that changes in lighting over an object
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will not differentially affect object recognition performance, i.e., recognition will 

be invariant.

Image-based Models. Despite the fact that variations in lighting dramatically 

change an image, lighting information may also facilitate the recovery of the 

shape and the structure of an object. Consequently, it would be less than 

optimal to deal with lighting variation by completely discarding it, thereby 

reducing the probability of correctly recognizing an object (e.g., a face) under 

ambiguous lighting conditions, as is the case with edge-based models.

Many recent recognition algorithms intended to model biological vision rely 

on image-based views rather than edge-based (viewpoint-invariant) object 

models (Fukushima, 2000; Lowe, 2000; Riesenhuber & Poggio, 2000; Ullman & 

Sali, 2000). The critical property of all such models is that they derive object 

representations that preserve the appearance of object features as they were 

displayed in the image. Thus, when new images are near to those used in the 

representation, recognition performance is better than when new images are 

distant from the original images. Hence, recognition is not invariant, but rather 

is sensitive to the manipulation of stimulus parameters such as pose or 

illumination. Because the representations used in image-based models 

preserve the appearance of an object in the image, e.g., encoding the lighting 

information in the scene, the predicted performance of these models for 

recognition under varying lighting conditions should not be invariant per se. 

Instead, recognition performance should differ as the lighting conditions in the 

scene change from known to unknown conditions.
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Evidence for the Role of Illumination in Human Object Recognition

One strong critique of the edge-based approach is that edge maps are 

rarely stable over even relatively small changes in the image. Unfortunately, 

changes in illumination across an object can create relatively large changes in 

an object’s image. Rather than being stable over changes in lighting, the edge 

descriptions are noisy and sensitive to variations in shading gradients and 

specularities. Thus, edge-based descriptions do not offer a likely basis for 

human object recognition (Bulthoff and Edelman, 1992; Sanocki, Bowyer, 

Heath, & Sarkar, 1998). Furthermore, without an explicit model of the lighting 

parameters for a given scene, it is difficult, if not impossible, to discount edges 

that arise from shadows as opposed to object contours. So, the edges seen in 

the image of an object would be suspect as to whether they were actually part 

of the object or an effect of the lighting in the scene, unless the three- 

dimensional scene parameters (including lighting) were known. This ambiguity 

could result in the edge descriptions for an object with two different lighting 

directions being drastically different from one another. Given that edge-based 

models predict lighting invariance and that image-based models predict some 

illumination dependence, is there a preponderance of evidence either way with 

respect to biological visual systems?

Behavioral Evidence. As mentioned before, the study of visual object 

recognition in humans and other primates has focused largely on the problem 

of recognition across changes in viewpoint (e.g., Rolls, Baylis, Hasselmo, & 

Nalwa, 1989; Bulthoff & Edelman, 1992; Logothetis & Pauls, 1995; Tarr, 1995).
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Other manipulations that have been assessed in at least a few studies include 

transformations in size, position, mirror-reflection, and surface detail. For the 

most part, however, one of the most dramatic transformations of an image has 

been ignored, the recognition of objects over changes in lighting direction.

There are several reasons why the study of recognition across changes in 

lighting direction has been omitted from the extant behavioral literature. First, 

until recently, computer graphics technology capable of creating realistic 

lighting effects (shading gradients, specularities, and soft shadows) was both 

difficult to use and expensive. This accessibility bottleneck made using high- 

end computer graphics to carefully answer questions about lighting and human 

object recognition essentially impossible for most behavioral and brain 

scientists. Second, creating well-controlled manipulations in lighting direction in 

the physical world is tedious and time-consuming and, therefore, less appealing 

than many other potential transformations, e.g., moving a camera around an 

object. Third, there has been awareness that lighting affects the shading 

gradients on an object’s surfaces, and that such shading information can be 

used to infer three-dimensional shape (e.g., Horn, 1975; Ramachandran, 1988). 

However, it has been less obvious that the effects of a particular illumination 

context might affect an object’s representation. That is, although lighting clearly 

influences processes involved in the derivation of representations of three- 

dimensional objects, it was not thought to impact the ultimate organization of 

such representations -  these being illumination invariant.
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Given the non-viability of edge-based models (e.g., Sanocki, Bowyer, Heath, 

& Sarkar, 1998), as well as other lighting-invariant representational schemes, 

as stable representations for object recognition, Tarr, Kersten, and Bulthoff 

(1998) used computer graphics to explore the question of whether human 

object recognition was truly invariant with respect to variations in illumination. In 

part, the finding that cast shadows helped constrain the perceived three- 

dimensional layout of a scene (Kersten, Knill, Mamassian, & Bulthoff, 1996; 

Kersten, Mamassian, & Knill, 1997) motivated the authors. Three notable 

findings emerged from Tarr et al.’s study: 1) Novel objects learned under one 

lighting direction were more poorly recognized when shown under a new 

lighting direction; 2) This illumination dependence was obtained only when 

attached shadows were present in the scene; 3) Overall recognition 

performance, although lighting invariant, was worse in the absence of attached 

shadows. Thus, shadows and shadow edges seemed to be included in object 

representations for one very good reason -  although they produced some 

lighting dependence in recognition, this dependence was outweighed by the 

fact that the shadows helped to disambiguate the three-dimensional 

appearance of the objects. It should be noted that the costs for changing 

lighting direction were relatively small and that overall recognition accuracy was 

quite high under both familiar and unfamiliar illumination conditions. However, 

the key point was that the pattern in performance of the lighting dependence 

gave information regarding the mechanisms underlying the practical human 

ability to attain near-invariant recognition.
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It is worth noting that the Tarr et al. (1998) study was restricted to novel, 

relatively simple objects composed of a small number of three-dimensional 

volumes. Left open was the question of whether such effects of lighting 

direction would impact known object classes in a similar manner. Indeed, a 

study by Moore and Cavanagh (1998) suggested that familiarity with the identity 

of an object might facilitate invariant recognition over different lighting 

conditions. They found that the ability of observers to recognize illuminated 

three-dimensional objects rendered as two-tone or binary images depended on 

whether the objects were familiar or unfamiliar to the observers. When shown 

as two-tone images, known objects were nameable while unknown, novel 

objects were not (until observers were shown the unknown objects as shaded, 

photo-realistic images). This suggested that both the sensitivity to lighting 

direction, and the overall recognition advantage seen for objects rendered with 

attached shadows, might break down for familiar objects. Although the 

behavioral literature is sparse, there are other hints that the recognition of some 

familiar object classes is lighting dependent. Most notably, Johnston, Hill, and 

Carman (1992) reported on the well-known horror-film phenomenon that human 

faces lit from below look very different from the same faces lit from above. 

Braje, Kersten, Tarr, and Troje (1998) explored this somewhat more 

systematically, finding that human faces shown with lighting from one side were 

recognized more poorly when shown with the light moved to the other side. 

Importantly, this lighting dependence was obtained both with and without 

shadows on the faces. Thus, the representation and recognition of at least one
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highly familiar object class, human faces, was demonstrated to be lighting 

dependent.

The lighting dependent behavior exhibited in these various experiments 

suggests that the object representations of these subjects is not edge-based, 

since edge-based models posit that recognition performance should be 

invariant across illumination changes over an object. Instead, an image-based 

object representation that retains information about how the appearance of an 

object changes with respect to known illumination conditions is a more plausible 

explanation for the behavior of these subjects.

Neuropsychological Evidence. Results from several studies of patients with 

cortical deficits suggest that the processing of information concerning 

illumination conditions in scenes is lateralized to the right posterior cortex. 

Performance measures on a prototypical/non-prototypical lighting task, in which 

patients tried to identify objects shown with either a conventional (even 

illumination) or an unconventional (uneven lighting on the object) lighting 

condition (Warrington and Ackroyd, unpublished, as cited in Warrington, 1982), 

demonstrated that patients with damage to the right posterior cortex were more 

impaired in their recognition performance than patients with left posterior 

damage. The unevenly lighting in the unconventional illumination condition 

caused severe shadows in the image.

Etcoff, Freeman, and Cave (1991) also reported on a prosopagnosic patient, 

L.H., with right anterior temporal and frontal cortical brain loss, and dilation of 

the left temporal horn of the lateral ventricle. This patient performed poorly on a
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task involving identifying objects under varying illumination conditions. While 

the authors suggested that the task performance was not due to any perceptual 

categorization deficit, since L.H. performed adequately on a task involving 

changing viewpoint, Warrington and James (1986) argued that the change in 

illumination on the objects in the task could have degraded the distinctive 

features of the objects more than merely rotating them in space. This evidence 

suggests that a representation that preserved the lighting parameters of the 

scene was used by L.H. for accurate object recognition under varying 

illumination conditions, and that this representation was unaffected by the right 

anterior temporal deficit. Edge-based models do not prescribe such a 

representation, as they discount surface characteristics in favor of shape 

contours; instead, the intact object representation was most likely image-based.

Neurophysiological Evidence. Neurophysiological studies also contribute to 

the evidence suggesting that variations in lighting are present in object 

representations to the extent that these representations correspond to particular 

neural codings in the cortex. A single-cell recording study was performed in 

macaque monkeys to study the effects of changing lighting conditions on faces 

for face-selective cells in the anterior upper bank of the superior temporal 

sulcus (STS) (Hietanen, Perrett, Oram, Benson, & Dittrich, 1992). The authors 

isolated the preferred face view for each cell they wished to study, and then 

tested the cells by displaying several images of the preferred face, each with 

different directions of lighting on the face. The illumination directions used were 

lighting from the front, from above, from below, and lighting from the side. Most
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of the cells showed complete lighting direction generalization (to directions as 

disparate as 90° apart), meaning that the firing pattern of a cell did not change 

with variations in illumination direction over preferred face view of that cell. 

However, some of the recorded cells only responded to certain lighting 

directions, similar to the specificity found for viewpoint in IT and STS cells 

(Rolls, 1994; Logothetis & Pauls, 1995). The authors stated that the cells with 

some lighting specificity contributed to overall illumination generalization when 

a small proportion of the cells were considered together as a population. These 

neurophysiological studies indicate that representing lighting in the scene is 

important to object recognition, in so far as there are cortical cells that respond 

to changes in illumination.

What is Invariant Object Recognition?

In interpreting results from studies of human object recognition, it is 

important to understand what is meant by the term “invariant.” One sense of 

“invariant recognition” literally means that performance in terms of response 

times and errors rates does not vary over changes in the input. A second sense 

implies that although response times and errors may be dependent on changes 

in the input, overall recognition abilities are good, with there being a high 

probability of identifying a given object regardless of how it is transformed. 

Potential confusions arise in translating human data to computer vision in that 

most behavioral and brain scientists use “invariant” in the first sense to 

characterize performance data in recognition tasks. That is, when they refer to 

“invariant recognition,” they mean cases where there is little or no sensitivity to
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a stimulus manipulation. For example, obtaining the same response times and 

errors rates in identifying an object at different viewpoints (Biederman & 

Gerhardstein, 1993).

Conversely, when such behavioral and brain scientists refer to “dependent 

recognition,” as in viewpoint dependent or illumination dependent, they are not 

referring to a condition where recognition completely fails given changes in the 

stimulus. Rather, they are characterizing the mechanisms whereby relatively 

invariant recognition is achieved. View-sensitive recognition mechanisms that 

take more time and are less accurate as a stimulus is rotated in depth away 

from a familiar view nevertheless generally support recognition across such 

transformations. Observers are simply a bit slower and less likely to be correct 

for the transformed, as opposed to the original, viewing conditions. Thus, 

although human recognition is not invariant in the first sense, it is invariant in 

the second sense. For purposes of linking human and machine vision, this is a 

critical point -  near-invariant recognition is attainable, but the algorithms 

whereby it is attained are not themselves invariant. As we shall see, it is 

precisely this lack of invariance in the mechanisms of recognition that informs 

us regarding the algorithms used by humans and allows us to compare human 

abilities to those of computer vision systems.

Illumination Dependence in Computer Vision Systems

As stated earlier, that illumination greatly influences the appearance of an 

object has not gone unnoticed in the computer vision community. Over the
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years many different approaches have been proposed to deal with the fact that 

changing the direction of lighting can impact mean illumination, shading 

gradients, shadows, and specularities. For whatever reason, particular 

emphasis has been placed on recognizing human faces across variations in 

lighting. Thus, computer vision models of object recognition, particularly face 

recognition, have often focused on how to compensate for illumination 

variability across multiple images in a manner that also allows for some 

representation of the lighting.

One approach to lighting variability that has recently become quite popular 

relies solely on two-dimensional images, rather than the explicit recovery of 

three-dimensional scene parameters. These image-based models reduce the 

dimensionality of the image space (each pixel value in an image being a 

coordinate in image space) by projecting it onto a lower-dimensional feature 

space. The object is then recognized by using a nearest neighbor classification 

scheme in the new feature space. Three of the most widely cited versions of 

this general method are referred to as Eigenfaces, Fisherfaces, and Illumination 

Cones.

Eigenfaces. A technique common to computer vision for the reduction of 

dimensionality is principal components analysis (PCA) also known as 

Karhunen-Loeve expansion. Given a set of sample images of different 

individual faces, PCA produces a linear projection that maximizes the 

determinant of the total co-variance matrix of the sample images of all 

individuals in the projected space. The resulting eigenvectors of this matrix
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have the same dimensionality as the sample images. Since the eigenvectors 

characterize the feature space, each individual face is represented by a linear 

combination of the eigenvectors. This technique is sometimes called 

“Eigenfaces” (Turk & Pentland, 1991a, 1991b). However, since PCA maximizes 

the total scatter in the projected sample images, both the between-individual 

variance and the within-individual variance are retained. For recognition, only 

the between-individual variance is useful. In fact, the retention of the within- 

individual information allows changes in illumination between images to 

influence the resulting feature space. This information can cause errors in 

subsequent recognition, since variations between images due to illumination 

are usually larger than those due to individual identity (Moses, Adini, and 

Ullman, 1994).

To compensate for the variability introduced by illumination, Belhumeur, 

Hespanha, and Kriegman (1997) and Georghiades, Kriegman, and Belhumeur 

(1998) point out that the first three principal components in the Eigenface 

representation are primarily due to changes in illumination and may be 

discarded for purposes of recognition. Georghiades et al. (1998) also 

implemented this approach in their comparison of several models of face 

recognition under variations in illumination. Consistent with their observation, 

the Eigenfaces method did achieve better recognition performance without the 

first three principal components. However, even with this modification, under 

some lighting conditions the Eigenface model failed 27% of the time, and
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showed a gain of only 16% over the Eigenface model with all principal 

components (Georghiades, Kriegman, and Belhumeur, 1998).

Fisherfaces. To address the poor performance of the Eigenface model 

across lighting variation, Belhumeur et al. (1997) proposed an alternative 

method that attempted to retain the benefits of linearly reducing the image 

space into a low-dimensional feature space, but avoid the problems of the 

Eigenface method. Belhumeur et al. (1997) used Fisher’s Linear Discriminant to 

maximize the ratio of the projected between-class scatter to the projected 

within-class scatter in order to provide better discrimination between individual 

faces. By doing so, they were able to produce a set of eigenvectors with 

reduced dimensionality but without the confounding variability due to 

illumination. To avoid a singular within-class scatter matrix, Belhumeur et al. 

(1997) created a technique they referred to as “Fisherfaces.” This method used 

PCA to first achieve a non-singular within-class scatter matrix by reducing the 

dimensionality of the image space down to (N-c), where N is the number of 

sample images and c is the number of faces. It then applied Fisher’s Linear 

Discriminant to reduce further the dimensionality of the feature space down to a 

(c-7) dimensional feature space. The authors empirically demonstrated that this 

technique could successfully recognize individual faces over broad variations in 

lighting across the sample images. Indeed, under the same lighting conditions 

where Eigenfaces produced 27% errors, Fisherfaces resulted in only a 5% error 

rate (Belhumeur et al., 1997). Thus, the application of Fisher’s Linear 

Discriminant following PCA provided a significant gain in illumination invariance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

19

Illumination Cones. Following the development of the Fisherface model, 

Belhumeur and Kriegman (1998) proposed an even more effective image- 

based model for object recognition under variable lighting and viewpoint 

conditions. This model is referred to as the “Illumination Cone” (IC) method. An 

Illumination Cone, a convex polyhedral cone in the image space whose apex 

coincides with the origin, contains the set of images of an object under all 

possible illumination conditions (where all light sources are at infinity). A small 

set of acquired images of an object is used as a basis set to construct its 

individual illumination cone; as few as three distinct images for each object can 

determine a given object’s cone in some cases. Critically, no explicit knowledge 

of the lighting parameters of the scene is required to construct the cone.

While the IC method was designed for use with convex objects with 

Lambertian surface reflectance, several empirical studies have shown that the 

method is quite capable of performing excellent recognition with non- 

Lambertian, non-convex objects like faces (Georghiades et al., 1998, 2000). As 

a measure of the effectiveness of the IC model, a separate comparison of the 

Eigenface, Fisherface, and IC approaches produced error rates of 78%, 51%, 

and 37%, respectively (Georghiades et al., 1998, 2000). Thus, with regards to 

illumination invariance, the IC model offers potentially far better performance 

than competing approaches.

The Current Problem
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The experiments presented here investigate how humans perform under 

conditions with varying illumination conditions. Observers were trained to 

recognize faces with lighting configurations designed to elicit different mental 

representations of lighting in each instance. For example, in one study the 

lighting direction varied from frontal to extreme (from one side). A second study 

used two well-separated lighting directions on either side of, or above and 

below, the faces. Several of the studies also used “extreme” lighting 

(illumination directions far from frontal, or typical, directions) during training, and 

then tested observers with more typical lighting conditions. Almost no studies 

have been performed of how humans deal with extreme lighting during training, 

so the results obtained from these studies are invaluable in and of themselves. 

Testing the Illumination Cone (IC) model (Belhumeur & Kriegman, 1998) with 

identical lighting conditions as used in the psychophysical experiments should 

provide the most useful comparisons between human subjects and computer 

vision models, specifically the IC model.

Of interest here is not simply the relative performance of human subjects 

and computer vision models, but what assumptions are made in order to make 

such comparisons and the evaluation of these comparisons. To provide the 

most useful comparison between human subjects and the IC model, we strived 

to closely mimic the experimental procedures used in the human 

psychophysical experiments in our execution of the IC model. However, the IC 

model in no way implements the large bulk of what we think of as vision. 

Therefore its output is in many ways derived under entirely different conditions
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from the data obtained with humans, who necessarily bring their entire visual 

system into play in recognizing faces. Thus, the IC model may be at somewhat 

of a disadvantage, yet it performs as well as or better than our human 

observers under some conditions. In large part this may be due to the fact that 

the IC model only “knows” about a small subset of all possible images. In 

contrast, humans are equipped with a lifetime of experience and knowledge of 

100,000’s of objects. This apparent disadvantage also has positive implications 

for human observers. Specifically, most humans are face experts, and thus 

have class-level knowledge regarding the appearance of faces in general. This 

knowledge allows us to rapidly learn and recognize entirely novel faces, as well 

as generalize from a single view of a face to an entirely new lighting (or 

viewpoint) context -  the idea being that other faces have been seen under the 

new experimental conditions. In contrast, the IC model has no knowledge of 

faces beyond the training it receives, and it never generalizes between 

individual faces.

These same issues arise in nearly every extant computer vision model that 

is compared to human data. Nearly all address only a small part of the “vision 

problem”; in contrast, the human observer applies a complete vision system 

that includes filtering, sophisticated mid-level organization, and a rich 

representational space (and years of learning). It would be a mistake to claim 

that a given method does any more than model one specific mechanism of 

human vision. In the case of the IC model, that mechanism generalizes from 

known to unknown lighting conditions for a given image of an object. This
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mechanism is but one factor that mediates the overall performance of a larger 

vision system, but it may be the particular component that determines how 

performance modulates across lighting variation. Therefore the patterns of 

generalization from known to unknown lighting conditions may be compared 

between the IC model and our human subjects. Similar comparisons are 

possible in many domains so long as one is willing to make explicit the 

assumptions used in both the computational model and the analogous 

psychophysical experiments. Indeed, we argue that such comparisons 

ultimately improve both sides of the problem -  refining the algorithms used in 

computational implementations and constraining the space of solutions for 

explaining elements of human vision.

In the next two chapters, experiments are described that detail the 

previously discussed investigation of object recognition and illumination. The 

experiments in Chapter 2 were designed to explicitly examine how 

systematically changing the type of trained lighting conditions would affect the 

behavior of human observers and a computer vision algorithm, the Illumination 

Cone (IC) model. By presenting the same stimuli in both the human 

psychophysical experiments and in the computational simulations, certain 

inferences could be made concerning the specific mechanisms by which 

humans exhibit illumination invariant object recognition under varying 

illumination conditions.

Using a method conceived to study possible models of representing 

viewpoint in object recognition, the experiments in Chapter 3 were designed to
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investigate interpolation in the representation of lighting direction with respect to 

object recognition. These experiments were also designed to answer questions 

concerning the effects of object geometry on any stored lighting representation.
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CHAPTER 2

Identifying Faces Across Variations in Lighting: 

Psychophysics and Computation

Given the superior performance of the IC model (as described in the 

Introduction) when compared to other image-based computer vision models 

that somehow deal with illumination in the image, it was used as the standard 

for comparisons with human vision. In particular, given that we assume human 

face recognition performance is at least as good across lighting variation as the 

best currently available computer vision algorithm, even the IC model may be at 

somewhat of a disadvantage. Adding to the unevenness of this comparison, 

human observers have years of experience at face recognition and presumably 

apply this class-level knowledge to the recognition of even entirely novel faces. 

In contrast, the IC model has no knowledge of faces beyond the training it 

receives at the beginning of each experiment. On the other hand, human 

observers are processing faces in the context of a wide array of potential 

objects, whereas the IC model knows only about faces.

Even considering these differences between humans and extant computer 

vision models, there is much to be learned by comparing the two. First,

24
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incredibly little is known about how humans generalize from known to unknown 

lighting conditions. Therefore, to the extent there is any correspondence 

between the biological and machine systems, we have learned something 

regarding the types of information that might account for human performance. 

Second, there is the possibility that there will be significant correlations between 

human and model performance. In this case, we can draw stronger 

conclusions, and may be able to refine future algorithms in the direction of 

biological plausibility.

In order to provide the most useful comparisons between human subjects 

and the IC model, we implemented similar training procedures for both cases. 

Moreover, to provide a more general picture of how both compensate for 

lighting variation, we chose to include experiments that used “extreme" lighting 

directions during training, i.e., lighting directions in which the majority of the 

face was not illuminated, as well as more “standard” lighting directions for 

training, e.g., frontal illumination. Interestingly, few computer vision studies 

have ever subjected their models to more than the standard cases during 

training. Thus, the experiments presented here are useful for understanding the 

behavior of the IC model independent of the comparisons with human 

observers. Finally, there are almost no studies of how humans perform when 

trained to recognize images of objects with extreme lighting directions; so 

again, the data obtained here is valuable in and of itself. However, the most 

informative analysis here is the comparison between the IC model and human 

behavior. Such specific quantitative comparisons between a working model
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from computer vision and behavior are not frequent in the human 

psychophysical literature, yet they provide a promising method for furthering 

understanding of algorithms in biological vision.

General Methods 

Human Psychophysics

Observers. The subjects for the five experiments were 106 human beings, 

mostly college students, between the ages of 18 and 22 years. There was a 

median of 20 subjects across the five experiments, with an equal number of 

males and females in each. All subjects had normal or corrected-to-normal 

vision. Subjects were naTve to the purpose of each experiment. When finished 

with the session, observers were informed of the intent of each experiment.

Apparatus and Stimuli. Stimuli were presented to the observers on one of 

three Apple PowerMac 8100s with NEC MultiSync XV15+ monitors. Connected 

to each were an Apple Extended Keyboard II and Apple Bus Mouse. The 

experiments were all programmed and run using the RSVP Experimental 

Control Software (Williams & Tarr, 2001).

All images and text in the experiments were displayed at 640x480 pixels of 

resolution. A strip of paper was placed above the numbers at the top of the 

keyboard. The strip was 22.7 cm long and 1.9 cm wide. The following ten 

names were placed horizontally from left to right along the center of the strip: 

Allen, Carla, David, Gary, Janet, Laura, Michael, Nigel, Robert, and Tony. The 

strip was positioned such that the first name (Allen) was placed above the ‘1’
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key and the last name (Tony) was placed above the ‘O’ key. During the 

experiment, observers made responses by pressing the number key on the 

keyboard under the name that the subject associated with the given stimulus on 

the screen.

A study sheet was given to each observer at the beginning of each 

experiment. The study sheet consisted of ten images printed on a sheet of 

paper. The images were placed in two rows on the sheet, five images along the 

top and five images along the bottom of the sheet. Each image was 295 x 338 

pixels (screen size) and 2.9 cm x 3.4 cm printed. Names for the images were 

placed below the faces. The individuals in the images were facing forward and 

the illumination on each face was from the front (see Figure 1).

n
Allen Carla David Gary Janet

Laura Michael Nigel Robert Tony

Figure 1. Example of the images and names subjects viewed prior to the start of the computer- 
based trials. Subjects viewed these images for 10 minutes in order to learn to associate the 
correct name to each face.
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The images used in the computer-based trials were 651 images taken from 

the Harvard Face Database (see Hallinan, 1994; available at: 

httD://www.coa.brown.edu/~tarr/stimuli.html#ha). The images taken from the 

database represent 10 different individuals viewed under 66 different 

illumination conditions. The individuals are in a fixed frontal pose for all 

illuminations. The images are cropped so that the hairline, the ears, and the 

necks of the people are missing. The cropping was done to eliminate these 

occluding contours because the surface reconstruction done by the models for 

which this image set was originally conceived could not handle the image 

gradients at these points. Since the database came with these cropped images, 

and the Illumination Cone model is one such model that performs a surface 

reconstruction, these cropped images were used for both the human 

psychophysical and the computer vision experiments. The lighting space was 

sampled in 15°. increments both horizontally and vertically to the right of the 

camera axis. A schematic of the illumination conditions is shown in Figure 2. 

While most of the individuals have 66 images, three individuals had missing or 

corrupted images and had less than the 21 images normally associated with the 

region 75° from the camera axis. This set of images was used in order to 

replicate the methods used for the computational experiment presented in 

Georghiades, Kriegman, and Belhumeur (1998) in a human psychophysical 

experiment.
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Figure 2. Schematic of the 66 different illumination conditions used in both the human 
psychophysical and 1C model experiments. The illumination conditions correspond to the 
intersections of the longitudes and latitudes overlaid with bold lines. The center of the space is 
denoted (0°, 0°). Adapted from an illustration in Georghiades, Kriegman, and Belhumeur 
(1998).

Procedure. Each experiment consisted of three phases: name learning, 

training, and testing. In the first phase, observers were asked to study a sheet 

of 10 faces with corresponding names for 10 minutes. This time allowed 

subjects to leam to associate the correct name with each face. This phase was 

necessary because the observers were asked in subsequent computer trials to 

identify other images by the name associated with a face on the study sheet. 

We told observers not to consult the study sheet once the 10-minute study 

period ended. Observers were told to turn the study sheet over so that the 

blank side faced up, and to set it aside during the remainder of the experiment.

The training phase familiarized observers with a small subset of 

illuminations for each face. This phase consisted of 60 computer-based trials. In
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each trial, observers first viewed a blank, white screen for 1000 ms followed by 

a 500 ms fixation point (+) in the center of the screen. The stimulus image then 

appeared centered on the screen for 1000 ms (see Figure 3). Observers then 

had as much time as needed to correctly identify the image. Subjects used the 

number keys (1, 2, 3...0) at the top of the keyboard, each labeled with one of 

ten names, for their responses. A feedback sound (the Macintosh default 

system “beep”) indicated an incorrect response and no beep indicated a correct 

response.

Alan 
Carla 
David

Tony

500 ms 1000 ms 1000 ms
Fixation Stimulus Response IT!

Figure 3. Schematic of the training phase for the human psychophysical experiments. The 
fixation cross was seen for 500 msec, followed by the training stimulus seen for 1000 msec, 
followed by a blank interval in which the subjects were given as much time as needed to make 
a response on the keyboard, followed by a 1000 msec inter-trial interval.

The testing phase of the experiment gauged how well subjects learned the 

representations of each face during training. This part of the experiment 

contained 591 trials. Each trial was identical in design to a trial in the second 

phase, except that the test stimulus images were shown for 500 ms and 

observers only had 3000 ms to make a response before the trial timed out (see 

Figure 4). If no response was made, it was recorded as such and was
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subsequently dropped form further analysis. No feedback was given during this 

phase.

+
Alan
Carla
David

Tony

500 ms 500 ms 3000 ms 1000 ms
Response ITIFixation Stimulus

Figure 4. Schematic of the testing phase for the human psychophysical experiments. The 
fixation cross was seen for 500 msec, followed by the testing stimulus seen for 500 msec, 
followed by a blank interval in which the subjects were given 3000 msec to make a response on 
the keyboard, followed by a 1000 msec inter-trial interval.

Each of the five experiments only differed in the set of training images 

viewed by subjects. These training sets are illustrated in Figure 5. The training 

sets for the first, second, and fifth experiments used six illuminations per face. 

The third and fourth experiments only contained one illumination for each face 

shown to subjects six times during training.
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Expt. 1 £ £  

Expt. 2 

Expt. 3 O

Expt. 4 %

Figure 5. Training sets for the human psychophysical and 1C model experiments. The training 
set for Experiment 1 contains illuminations within 15° of the camera axis. The training set for 
Experiment 2  is a mirror of Experiment 1 with extreme lighting directions. Experiments 3 and 4 
only have one illumination condition each, (0°, 0°) and (75°, 0°), respectively, for training. The 
training set for Experiment 5  contains the illuminations along the horizontal meridian of the 
illumination space, from (0°, 0°) to (75°, 0°). Adapted from an illustration in Georghiades, 
Kriegman, and Belhumeur (1998).

Model Simulations

While replicating the method used by Georghiades et al. (1998) with human 

psychophysical experiments, it also was necessary to test the Illumination Cone 

(IC) model under similar training conditions as used in the behavioral 

experiments. Subsequently, the IC model was trained using the same sets of 

illuminations as in the human behavioral experiments, with some modifications 

to help equate the experience of humans and the computational model.

In the rendering of the Illumination Cone model used, the training phase 

occurred with the construction of the illumination cone for each individual face 

(Belhumeur & Kriegman, 1998; Georghiades et al., 1998, 2000). As previously 

described, an illumination cone contains all possible images of an object under
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an arbitrary number of point light sources at infinity. An illumination cone is 

described by the following equation:

C = {x : x = £  max(8S,, 0), Vs, e R3, Mk e Z*} 

where x is an image in the illumination cone; B is a matrix whose rows 

represent the product of the albedo and a unit surface normal directed inward 

from a surface point projecting to a certain pixel in the image; s is a column 

vector representing the product of the light source strength with the light source 

direction (as a unit vector); R3 is the set of real numbers (3-space); and Z* is the 

set of positive integers. Belhumeur and Kriegman (1998) present a complete 

derivation and proof of the Illumination Cone (IC) model.

The cones constructed according to the trained lighting directions are 

labeled with the correct name of the individual face for later recognition. Thus, 

the IC algorithm combines the tasks of name learning and training that the 

human subjects performed during the comparable psychophysical experiments. 

Since human subjects learned the name for each face separately from the 

training task, they always received input about the frontal (0°, 0°) illumination 

condition separate from the illuminations in the training set. Due to this 

additional illumination component, the IC model was also given the (0°, 0°) 

condition during training for all of the experiments in which this illumination was 

not already a part of training, except for Experiment 2 in which the addition of 

the (0°, 0°) component seemed to hinder the performance of the IC model.

Another change in the training sets used with the IC model occurred for 

Experiments 3 and 4. In the corresponding human psychophysical experiments,
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subjects only received one illumination condition repeated six times during 

training. However, the IC model requires at least three different images in order 

to construct the illumination cone for each face. Moreover, humans already 

know a great deal about how the appearance of faces is generally affected by 

lighting direction. In order to fulfill the need for three different images and 

compensate for pre-existing knowledge in human subjects, in both Experiments 

3 and 4, the IC model was trained using a set of seven different illumination 

conditions, of which six were randomly selected, and the seventh was either 

(0°, 0°) or (75°, 0°), respectively. These training sets are illustrated in Figure 6. 

This was a departure from previous training, since the other experiments used 

uniformly defined lighting conditions, either within 15° of one single light or 

along the same lighting axis. Also, since faces are a known class to humans 

and observers usually generalize well to unknown faces, by randomly choosing 

the training conditions, how well the IC model would generalize to other 

unknown conditions given a non-uniform set of illuminations could be 

determined. An alternative method might be to choose random illuminations 

from several regions of the light sphere so that the entire light sphere would be 

represented in the training set. This method might provide a more robust 

generalization of the entire light space.
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Figure 6. Training sets for Experiments 3  and 4 for the Illumination Cone (IC) model. Open 
circles are lighting coordinates for Experiment 3 and filled circles are coordinates for Experiment 
4. Coordinate (30°, -15°) is a training illumination for both experiments. Adapted from an 
illustration in Georghiades, Kriegman, and Belhumeur (1998).

Another component of the IC model was building the basis vectors used to 

construct the illumination cone for each face. This process involved setting two 

parameters, one a saturation threshold and the other a shadow threshold. In 

order to build the three basis vectors for each face, the training images were 

input into the algorithm and reflected along the vertical axis (in order to double 

the number of images used in the calculations). Thresholding was performed on 

the images according to the saturation and shadow parameters previously 

defined, and then the image set was reduced into three component vectors. 

These basis vectors were then used to construct and label the illumination 

cones for each individual face. Subsequently, the illumination cone built for 

each individual contained a representation of all 66 illuminations in the lighting 

space for that face. This enabled the model to later identify the individual face in 

a novel image by comparing the image to the illumination cones and choosing
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the cone with the closest representation using a nearest-neighbor algorithm 

computed through a non-negative least squares solution.

Results

Similar analyses were run on the data from the human psychophysical and 

the IC model experiments. Any differences in the analyses between the two are 

explained below. For all of the experiments, the lighting coordinates for each 

image were recorded and the Euclidean distance from the nearest training 

illumination to that coordinate was computed. For clarity of presentation, these 

distances were then mapped to the most appropriate lighting condition bin: 15°, 

30°, 45°, 60°, or 75°. Figure 7 shows an example of the different illumination 

conditions that comprised these five bins for the training set from Experiment 1. 

The dependent variable across all experiments was percent correct recognition, 

i.e., the ability to correctly identify each individual face, for each lighting 

condition for both human subjects and the IC model.
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Figure 7. Sampling of test images for Experiment 1, and their respective distances from the 
closest illumination direction in the training set. The training set for Experiment 1 consisted of 
illuminations at the following coordinates: (0°, 0°), (0°, 15°), (0°, -15°), (15°, 0°), (15°, 15°), (15°, 
-15%

Human Psychophysics

Subjects that failed to respond to more than 10% of the test trials were 

removed from the study. A trial with no response indicated that the trial timed 

out (i.e., 3000 msec elapsed) before the subject responded. This procedure 

ensured that the results contained only observers who made actual responses 

to a majority of the test trials. This reduction in the data changed the median 

number of subjects across experiments from 20 to 18. For the remaining
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subjects, trials with no response were dropped from all analyses. The mean 

percent correct recognition for each test lighting condition (15°, 30°, 45°, 60°, 

and 75°) across subjects, and the within-subject standard error of the mean, 

were computed and are illustrated as the human psychophysical data marked 

as circles in Figures 8 through 12 (Experiments 1 through 5 respectively).

Across all five experiments, as the distance between the test illuminations 

and the training set increased, the identification performance of the subjects 

decreased. This performance drop-off was most pronounced in Experiments 1, 

3, and 5, (see Figures 8, 10, and 12) where the images in the training sets 

contained mostly frontal or near-frontal illuminations or, in the case of 

Experiment 5, the trained lighting directions were all along the horizontal 

meridian of the lighting sphere. In contrast, the performance decrease across 

lighting conditions was less apparent in Experiments 2 and 4 (see Figures 9 

and 11), where the training sets contained extreme illumination directions that 

produced images with pronounced shadows.

One explanation for the fall-off in performance with distance in Experiments 

1 and 3 (see Figures 8 and 10) is that the 60° and 75° lighting conditions 

included images with extreme illuminations. Because so much of the face was 

in shadow, subjects had little information available to discern the identity of the 

face. In contrast, in Experiments 2 and 4 (see Figures 9 and 11), subjects 

actually saw these extreme illuminations during training, and were therefore 

able to identify the individual faces at test in these otherwise difficult-to- 

recognize lighting conditions. Furthermore, the 60° and 75° test lighting
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conditions in these two experiments were comprised of near-frontal 

illuminations. The near-frontal lighting made establishing the identity of the 

faces easy, despite the unfamiliarity of the lighting directions, compared to the 

analogous test lighting directions in Experiments 1 and 3.

100
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Euclidean distance from the nearest training illumination (degrees)

Figure 8. Results for both human subjects and the Illumination Cone (IC) model for Experiment 
1 (training with near-frontal lighting directions). The trained illumination directions were within 
15° of the camera axis (0°, 0°). The circles represent mean percent correct for the human 
subjects. The error bars are the within-subject standard error of the mean. A single case of the 
IC  model is represented by the squares.

Note that although during the initial name association task subjects had the 

benefit of viewing the frontal (0°, 0°) illumination condition before the start of 

each experiment, this experience alone did not dramatically help them in the 

subsequent recognition tasks. For example, in Experiments 2 and 4 (see 

Figures 9 and 11), they were still worse for this lighting condition compared to 

the extreme lighting conditions that were seen during training. This is surprising
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because the most typically encountered “real-world” image, e.g., canonical, of a 

face is likely to be the frontal view with frontal illumination (from above); 

consequently we would expect human subjects to perform better with familiar 

near-frontal illuminations (e.g., the images in the 60° and 75° lighting conditions 

in Experiments 2 and 4).
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Figure 9. Results for both human subjects and the Illumination Cone (IC) model for Experiment 
2 (training with extreme lighting directions). The trained illumination directions were within 15° of 
(75°, 0°). The circles represent mean percent correct for the human subjects. The error bars are 
the within-subject standard error of the mean. A single case of the Illumination Cone (IC) model 
is represented by the squares.
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Raure 10. Results for both human subjects and the Illumination Cone (IC) model for Experiment 
3 (training with a single frontal lighting direction). The trained illumination direction was on the 
camera axis, (0°, 0°). The circles represent mean percent correct for the human subjects. The 
error bars are the within-subject standard error of the mean. A single case of the Illumination 
Cone (IC) model is represented by the squares. Note that the IC model was only tested with 
four new illumination types (bins) because of the manner in which lighting directions in the 
training set were randomly selected. See text for an explanation for this selection procedure.
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Figure 11. Results for both human subjects and the Illumination Cone (IC) model for Experiment 
4 (training with a single extreme lighting direction). The trained illumination direction was (75°, 
0°). The circles represent mean percent correct for the human subjects. The error bars are the 
within-subject standard error of the mean. A single case of the Illumination Cone (IC) model is 
represented by the squares.
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Figure 12. Results for both human subjects and the Illumination Cone (IC) model for Experiment 
5 (training with lighting directions along the horizontal axis of the lighting space). The trained 
illumination directions were along the horizontal meridian between (0°, 0°) and (75°, 0°). The 
circles represent mean percent correct for the human subjects. The error bars are the within- 
subject standard error of the mean. A single case of the Illumination Cone (IC) model is 
represented by the squares.

Illumination Cone (IC) Model

The data points marked with squares in Figures 8 through 12 illustrate the 

recognition performance of the IC model and can be compared to the 

performance of the human observers in Experiment 1 through 5. An attempt 

was made to maximize the performance of the IC model by trying a variety of 

saturation and shadow thresholds for each face in each experiment. The 

saturation and shadow thresholds were adjusted for each face until the model 

was able to successfully construe basis vectors from the training set. These 

adjustments were made several times, and the parameters that provided the
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best performance were chosen. The resulting model performance in each 

experiment represents the best attempt at manually manipulating these 

thresholds. Because of the variable nature of the IC model due to these 

parameters, the recognition performance shown for each experiment may not 

actually represent optimal performance. Evidence for this is seen in the 

recognition performance of the model for the training illuminations. Only in 

Experiment 1 does the model correctly recognize all of the faces at the training 

illuminations. However, the performance of the IC model during training was 

always better than human performance in the same experiments, suggesting 

that the model was performing adequately.

The parameter search could have been done differently. The IC model could 

have been modified to search for the best parameter fit based on maximizing 

the amount of information in the images (i.e., keeping as much saturation and 

shadow as possible), while optimizing performance on the training set. This 

procedure would allow only those thresholds for which the IC model exhibited 

optimum (100% correct) performance on the training set. With the model 

exhibiting this level of performance during training, its performance on the test 

illumination directions might be more valid. Anecdotally, the experimenter 

noticed that the saturation and shadow thresholds for which the IC model 

exhibited better performance for the training set did not necessarily guarantee 

the best performance for the model on all of the tests sets. This suggests that 

the best strategy for finding the optimum saturation and shadow thresholds
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might involve finding those thresholds that boosted performance for all 

illumination conditions.

Importantly, as with our human subjects, the recognition performance of the 

IC model in each experiment decreased as the distance of each test 

illumination from the training set increased. The only minor exception to this 

pattern occurred in Experiment 4 (see Figure 11); in this experiment, 

recognition performance actually increased by 5% between 15° and 30° and 

then resumed its downward trend. This change in pattern was probably due to 

the span of the training illuminations across the lighting sphere. Since the 

training conditions were randomly selected for this experiment (see Figure 6), 

the illuminations comprising the 30° bin may actually have mapped onto the 

average of the illuminations in the training set. Another consequence of using a 

randomly selected set of lighting directions for the training set was that 

Experiment 3 included only four test lighting condition “bins” (see Figure 6). 

Specifically, when the distances of each test illumination from the training set 

were computed, none of the lighting directions extended beyond the 60° bin 

(the greatest distance being 54°). Similarly in Experiment 4, the greatest 

distance of any tested illumination from the training set was 67°. However, 

because this lighting direction was equidistant between the 60° and 75° bins, 

and its performance was poor in relation to the 54° and 62° lighting directions, it 

was placed into the 75° bin.

As with our human subjects, the IC model was sensitive to whether it was 

trained with near-frontal or extreme illuminations. Specifically, in Experiment 1,
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training with near-frontal illuminations produced 45% correct performance at its 

worst. In contrast, in Experiment 2, training with extreme illuminations produced 

15% correct performance at its worst. The results of Experiments 3 and 4, 

analogous to Experiments 1 and 2, but with single lighting directions at training, 

were less clear-cut in that an attempt was made to approximate human 

experience by including six additional randomly selected lighting directions (for 

the specific images used, see Figure 6). Even still, performance for 

Experiment 3, 78% correct at its worst, was better than for Experiment 4, 72% 

correct at its worst; again indicating that the IC model is sensitive to the quality 

of the images with which it is trained.

These results suggest that, as in the human psychophysical experiments, 

extreme shadows in the training images do not allow the IC model to construct 

a robust representation of the lighting space for each face. In contrast, when 

the faces are clearly illuminated during training, the IC model is apparently able 

to create a much better approximation of the actual lighting space.

Finally, Experiment 5 used training lighting directions that spanned both 

near-frontal and extreme lighting directions, all lying along a horizontal meridian 

of the lighting sphere. Here performance was remarkably poor at all but the test 

lighting condition closest to the training set. This result suggests that the IC 

model is quite bad at creating a generic lighting model for an object when the 

trained lighting directions are all accidentally aligned. Apparently when lighting 

changes only interact with a singular aspect of an object’s geometry, insufficient 

information is available regarding how the surfaces of an object will appear
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when illuminated from an orthogonal direction. This is exemplified by the fact 

that the IC model was quite bad at identifying faces when the lighting direction 

was shifted vertically relative to all training illuminations (see Figure 12).

Comparing Psychophysical and Computational Results

How do we compare the performance of a putative computational model of 

human performance with actual observations of human performance? One 

approach would be to take the comparison at face value and simply assess 

where the model performance is better, where human performance is better, 

and where the two are essentially the same. However, this sort of comparison 

is rife with peril in two respects. First, nearly every extant computational model 

of vision deals only with a small part of the “vision problem”; in contrast, the 

human observer is always applying a complete vision system which includes 

massive early filtering, sophisticated mid-level organization, and a remarkably 

rich representational space. Thus, there is little reason to believe that a model 

should perform anywhere near as well as a human (let alone a pigeon or rat!). 

Second, even if a computer vision model did approach the level of human 

performance, it would most likely be for very different reasons. Thus, the fact 

that the IC model actually does come close in many cases to the absolute 

performance of our subjects is not particularly informative.

Given this context, is it possible to make any statement about models of 

computer vision vis-a-vis human vision? Indeed it is. Specifically, a good 

computer vision model intended to capture some aspect of human vision is 

responsible only for that aspect. That is, it would be a mistake to claim that a
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given model does any more than model one specific mechanism of human 

vision. In the case of the IC model, that specific mechanism is how a 

recognition system generalizes from known to unknown lighting conditions for a 

given image of an object. This mechanism is but one factor that mediates the 

overall performance of the larger system, but it is the particular element that 

mediates how performance modulates across light variation. This means that 

the patterns of generalization from known to unknown light conditions may be 

compared for the IC model and our human subjects (although it is intriguing that 

model accuracy and human accuracy are sometimes quite close).

The overall general pattern of performance between the IC model and 

humans is illustrated in the correlations shown in Table 1. The first set of 

correlations represent the data with the training sets included in the calculations 

(i.e., performance during the training phase), while the second set does not 

contain these data. The correlations without the training sets are probably more 

representative of the similarity between human performance and the IC model. 

Because the model is not a perfect representation of actual human vision, but 

merely a possible representation of a specific chunk, it always performs very 

well on images that were previously viewed, i.e., training images. By 

comparison, humans can apply a great deal of class knowledge to the 

recognition of faces, so although they are always poorer at recognizing training 

images, they are typically much better at test images than the IC model. That is, 

humans generally know how the appearance of a human face will change with
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changes in lighting direction, and they can use this general information to make 

inferences about the appearance of specific faces.

Experiments With Training Data Without Training Data

1 0.992 0.991
2 0.388 0.962
3 0.966 0.944
4 0.796 0.941
5 0.896 0.905

Table 1. Correlations (Pearson’s r) between the IC  model and psychophysically assessed 
human subject performance for Experiments 1 through 5.

The Microstructure of Generalization. Beyond the fact that as test images 

were further and further from training images in terms of illumination direction 

both human observers and the IC model exhibited a general decrease in 

recognition accuracy, there is the question of how specific lighting directions 

affected performance. A general characteristic of the human-model comparison 

is the degree of similarity in the deviations from linearity (defined here as a 

monotonic change of equal magnitudes in performance) in both recognition 

functions. In certain cases, when there was a deflection in the response of 

humans, a similar deflection was found for the model; other times this was not 

the case. However, some of the more subtle similarities between the two 

patterns of performance are not visible in Figures 8 through 12 because we 

“binned,” or grouped, the data into five qualitative categories for purposes of 

clarity of presentation. In particular, in the raw data, there was generally an
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inflection point in performance at the 45° distance from training for both human 

observers and the IC model. That is, for lighting directions less than 45°, there 

was a less pronounced performance falloff for both humans and the model, 

while for lighting directions greater than 45°, the performance falloff was more 

pronounced. Another specific similarity between humans and the IC model is 

that both showed poorer overall performance in Experiment 5 relative to their 

own performance in Experiments 1 through 4. Thus, both human subjects and 

the IC model appear sensitive to an accidental alignment of ail lighting 

directions during training.

This microstructure analysis of lighting generalization is the only way to 

compare human and model performance because the pattern of responses is 

what matters. If human and model performances degrade in similar ways, then 

inferences about how the systems compensate for changes in illumination can 

be made with respect to each other. Such microstructure comparisons are 

important for understanding exactly how humans and computational systems 

handle lighting variability and should be explored in more detail in future 

studies.

Discussion

To date there has been surprising little work on how biological systems 

compensate for variations of lighting in a scene. To some extent this stems 

from a failure to recognize the difficulty of the problem, and the assumption that 

edge-based models are able to produce lighting-invariant descriptions. Other
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factors include an inability to readily generate stimuli under varying lighting 

conditions, and a lack of models that make any concrete predictions about the 

representation of lighting information and its impact on recognition. At the same 

time, because they were often intended as working, real-world systems, 

recognition models in computer vision ran head on into the problem of lighting. 

As the lighting direction shifts, mean illumination, shading gradients, shadows, 

and specularities on an object may all change in dramatic fashion.

Recent work brings together these two threads. First, several studies of 

human recognition under varying lighting conditions revealed that humans are 

indeed sensitive to changes in illumination (Tarr et al., 1998), even for highly- 

familiar classes such as faces (Braje et al., 1998). Second, unlike some earlier 

models within computer vision (e.g., Turk & Pentland, 1991a, 1991b), a new 

image-based approach to object recognition aiiowed for the recognition of 

objects across varying lighting conditions (Hallinan, 1994; Belhumeur & 

Kriegman, 1998).

Although the inclusion of lighting parameters in high-level object 

representations may seem inefficient at first glance, there is evidence that such 

information is critical for humans in the disambiguation of three-dimensional 

structure, particularly for unfamiliar objects (Tarr et al., 1998) or under­

constrained scenes (Kersten et al., 1996; Kersten et al., 1997). Thus, not only 

do human observers derive shape information from shading gradients and 

surface orientation from specularities, but we also draw on shadows to provide 

constraints on the otherwise ambiguous three-dimensional layout of a scene.
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However, there is some cost to relying on such information -  recognition 

performance, which without the presence of such information might be lighting 

invariant, becomes lighting sensitive. That is, the object representations we 

remember and use for recognition include information about the particular 

lighting conditions under which objects were actually seen. Therefore, changing 

the lighting from a familiar to an unfamiliar configuration will negatively affect 

recognition. As mentioned, this effect was observed for both novel and familiar 

objects. Examination of the pattern of this illumination sensitivity is the first step 

towards understanding the specific algorithms being used by the human visual 

system to compensate for variations in lighting.

The results of the present study provide a direct comparison between the 

performance of human observers and a functional computer vision recognition 

system. Although neither the behavioral task used here, the recognition of static 

views of faces, nor the implemented algorithm used for recognition, the 

Illumination Cone (IC) model, address the question of how generic object 

recognition is achieved, both the task and the model capture critical aspects of 

the recognition process. Specifically, how biological and machine vision 

systems compensate for the dramatic changes in the appearance of objects 

that occur with variable lighting. Human faces were used as the stimulus 

domain because they offer a paradigmatic recognition problem that is both 

complex and of great interest. Building on recent work in both research 

communities, the generalization performance of human observers and the IC 

model were tested under similar training conditions. In each of five experiments,
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observers and the model learned the identity of ten faces under a small subset 

of lighting directions, and were then tested with the same faces appearing 

under new lighting directions. The ability to generalize from familiar to unfamiliar 

illumination conditions was then compared between human subjects and the 1C 

model.

Critically, the nature of the training images was manipulated in each 

experiment. Experiment 1 used a set of near-frontal lighting directions, 

Experiment 2 used a set of extreme lighting directions (opposite to those used 

in Experiment 1), Experiment 3 used a single frontal lighting direction, 

Experiment 4 used a single extreme illumination direction (opposite to that used 

in Experiment 3), and Experiment 5 used a training set that spanned the 

horizontal meridian of the lighting space from frontal to extreme lighting. Across 

these different training conditions the following results were obtained:

• Although the IC model exhibited higher accuracy for the exact images 

shown in training, it often performed worse than humans for the same 

faces under new lighting directions.

• Humans were much better at generalizing from extreme lighting 

directions than was the IC model. On the other hand, recognition 

performance for subjects and the model was similar when 

generalizing from near-frontal lighting directions.

• Humans were able to perform at a more constant level with new 

illuminations distant from the training set when the training set was 

comprised of extreme lighting directions. In contrast, when the
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training set was comprised of near-frontal directions, generalization 

fell off rapidly with distance from the trained images.

• When the training set was comprised of lighting directions along the 

horizontal meridian, humans were far better than the IC model at 

generalizing to test images arrayed vertically around this horizontal 

axis.

Of course, some of the above differences are inherent in the comparison 

being made between the full vision system of humans and the extremely limited 

vision system implemented in the IC model. Moreover, although humans must 

recognize faces in the context of their familiarity with 1000’s of similar objects 

(in particular other faces), they may also use their knowledge of the general 

geometry of faces as a class to make inferences regarding the appearance of 

new faces under novel lighting directions (for a similar class-level mechanism 

for making inferences about novel viewpoints, see Tarr & Gauthier, 1998). 

These factors lead to the expectation for human observers to display both 

better generalizations across all unfamiliar illumination conditions and 

dramatically better generalizations for lighting directions far from the training set 

as compared to the IC model. At the same time, the fact that the IC model has 

few competitors (10 individuals in this implementation) for an individual face 

under the trained illumination conditions, while humans have 1000’s of possible 

matches (due to experience), might lead to the expectation that the model 

should perform better than humans for the exact images used in training.
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Even given these differences, there is remarkable similarity in the 

performance of our human subjects and the IC model. It is worth remembering 

that even the fact that humans show any systematic lack of lighting invariance 

is somewhat contrary to “standard” thinking in the psychophysical literature. To 

date, all studies of illumination dependence in human object recognition have 

only compared changed to unchanged lighting in a qualitative manner -  never 

examining how recognition performance varies as a function of distance from 

known illumination conditions. Under these circumstances, it is difficult to infer 

much about the computational algorithms used to compensate for lighting 

variability, even more so because most qualitative comparisons have revealed 

only small effects of changing lighting direction (Braje et al., 1998; Tarr et al., 

1998). Here those findings are extended in a more systematic fashion, 

exploring not only how performance varies as the lighting direction is moved 

further and further from the original training conditions, but how well human 

vision generalizes across both standard and unusual lighting conditions; for 

instance, when most of the face is in shadow due to extreme lighting directions.

A second important feature of the present study is the execution of 

analogous experiments in both humans and computer vision systems. 

Specifically, a computational model was employed specifically designed to 

account for lighting variability in scenes. The performance of this model in each 

experiment was then directly compared to the generalization pattern obtained 

from human observers. These comparisons are summarized above, but overall 

it is clear that both humans and the IC model show a similar sensitivity to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

56

lighting direction, although specific effects are mitigated somewhat by the 

highly-familiar nature of faces for human subjects.

Such results indicate that one important future study involves comparing 

human performance to recognition systems that address the question of lighting 

variability using different algorithms from the IC model. For example, the 

approaches implemented both in the Lades, Vorbruggen, Buhmann, Lange, von 

der Malsburg, Wurtz, & Konen (1993) and Atick, Griffin, & Redlich (1996) 

computer vision systems should be considered among others. In terms of the 

conditions under which these and other models are compared to human 

observers, there are also more complex lighting manipulations that might be 

implemented. One of the most important is the inclusion of multiple 

simultaneous light sources for each image. Such complexity may make images 

more difficult to interpret, but also may provide additional constraints on the 

extraction of a lighting model for the scene, as well as the structure of the 

object.
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CHAPTER 3 

Lighting and Face Recognition: 

Evidence for Illumination Dependent Representations

The experiments discussed in the previous chapter provide evidence that 

humans exhibit illumination dependence, and this suggests that a model of 

illumination is used by the human visual system. The results, from identical 

methods used in both human psychophysical and computer vision experiments, 

suggest that the algorithms used in the Illumination Cones (IC) computational 

model (Belhumeur & Kriegman, 1998) are similar to the mechanisms 

responsible for human object recognition under variable lighting conditions.

The previous chapter’s results show that the Illumination Cone approach 

does not predict perfect generalization from known to unknown lighting 

conditions. As the lighting direction becomes more distant from those used 

during training, the recognition performance of the algorithm suffers. The IC 

model only provides a mechanism for compensating for changes in illumination. 

Although the model constructs a representation of the entire lighting space, this

57
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representation is based on the images input to the model during training, and 

these training images greatly influence the quality of the representation, as one 

would expect with an image-based model. The representation is more robust 

for lighting directions close to the trained lighting directions since those images 

contain scene parameters similar to the trained ones and, therefore, the model 

predicts better recognition performance for lighting directions near the known 

(trained) illumination conditions. This performance bias to lighting directions 

near the trained illumination conditions is similar to the prediction of models that 

use interpolation to compensate for changes in object viewpoint (e.g., Poggio 

and Edelman, 1990).

These viewpoint-interpolation models use a small number of images, each 

of which contains the object at a different viewpoint, to build a representation 

that describes the object at unknown viewpoints by synthesizing them through 

interpolation of the known viewpoints, much in the same way that the 

Illumination Cones (IC) model builds a lighting representation. Similar also to 

the performance of the IC model in recognizing objects with illuminations close 

to the trained illumination conditions, these viewpoint-interpolation 

representations predict better object recognition performance at unknown 

viewpoints that are close to the trained viewpoints.

Poggio and Edelman (1990) proposed a viewpoint-interpolation model that 

used a network that learned to recognize three-dimensional objects from two- 

dimensional views. They suggested that encoding a sufficient number of two- 

dimensional views of an object was equivalent to having the specific three­
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dimensional structure of the object. They derived this idea from the work of 

Ullman (1979), who specified a model of structure-from-motion to specify the 

three-dimensional structure of an object by a set of feature points (at least 5) 

present on two perspective views of the object. Poggio and Edelman’s model 

uses a regularization scheme based on Generalized Radial Basis Functions 

(GRBF) that approximate an object’s three-dimensional structure from any 

perspective view given a small number of basis functions (two) and a set of 

“familiar1’ views (10-40 views per object). The GRBFs are set in the middle layer 

of the network and compute the distance of the input view from a fixed standard 

view, represented by the center of the basis function, and this value is applied 

to a weighted distance function. The resulting value is the activity of the GRBF. 

The output of the network is a linear superposition of the activities of all the 

basis units in the network, and a weighted combination provides an output 

standard view of the object. This model is able to accomplish 3-D object 

recognition from 2-D image representations fairly well by comparing the input 

image to this interpolated viewpoint surface of all possible viewpoints. This 

method is similar to the illumination representation constructed by the 

Illumination Cone (IC) model. The IC model uses several training images to 

construct three orthogonal basis vectors that are used to synthesize images of 

the object under all possible lighting directions. The object representation 

created by this viewpoint-interpolation method predicts that unknown object 

viewpoints that are close to the trained viewpoints will create output views of 

the object that will be similar to the standard image elicited by the training
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views. Bulthoff and Edelman (1992) performed several psychophysical 

experiments designed to determine if this viewpoint-interpolation model 

predicted human performance.

The study by Bulthoff and Edelman (1992) investigated whether objects 

were represented as three-dimensional models or as two-dimensional 

“snapshots.” They looked at the predictions of three models: 1) the model 

proposed by Ullman (1989) that compared the input image of an object with the 

projection of a stored three-dimensional object model, which they called 

“recognition by alignment”; 2) Ullman and Basil’s (1991) model of recognition 

that linearly combined several two-dimensional views of an object; and 3) the 

model discussed above that performs recognition through approximation across 

an interpolated hypersurface of all possible two-dimensional views (Poggio & 

Edelman, 1990; Poggio & Girosi, 1990). The results of the Bulthoff and 

Edelman (1992) experiments showed that observers committed fewer errors in 

recognizing “paperclip” objects when the object viewpoints shown during testing 

were between two trained viewpoints, as opposed to being outside of the 

trained viewpoints, or orthogonal to the axis defined by the training viewpoints. 

They argued that this good performance was due to the observers interpolating 

between the two trained viewpoints to accurately recognize the objects.

As stated previously, the architectural assumptions of the viewpoint- 

interpolation model of Poggio and Edelman (1990) and the Illumination Cone 

(IC) model of Belhumeur and Kriegman (1998) are quite similar. Specifically, 

both models build object representations that are hypersurfaces of all possible
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views or lighting conditions, respectively. The models also both predict that 

performance will be better for views or lighting directions, respectively, that are 

closer to those known to the representations of the models. Given these 

similarities between the viewpoint-interpolation model and the Illumination 

Cones (IC) model, the present set of experiments has two goals: 1) Examine 

the specifics of how a model of illumination might function given the need to use 

interpolation in order to achieve adequate object recognition; 2) Determine 

whether object geometry and its relation to lighting direction affect how the 

illumination model is computed.

To achieve these goals, the present study uses the methodology prescribed 

by Bulthoff and Edelman (1992) in their study of object representation and 

viewpoint to determine the role of interpolation in models of illumination. Instead 

of varying the views of the faces, the direction of lighting will vary on the faces 

while the view remains constant.

General Methods 

Observers

Seventy-seven people participated across four experiments. These subjects 

were mostly college students between the ages of 18 and 23 years. The 

allocation of males and females was close to equal in each experiment, except 

for Experiment 1 in which twice as many females participated. Table 2 shows 

the distribution of subjects in each of the four experiments. All subjects had 

normal or corrected-to-normal vision. Subjects were naive to the purpose of the
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experiments. When finished with the session, observers were informed of the 

intent of each experiment.

Females Males Total

Experiment 1 12 6 18

Experiment 2 12 12 24

Experiment 3 10 9 19

Table 2. The distribution of observers across the three experiments described in Chapter 3.

Apparatus and Stimuli

Stimuli were presented to the observers on one of three Apple PowerMac 

8100s with NEC MultiSync XV15+ monitors. Connected to each were an Apple 

Extended Keyboard II and Apple Bus Mouse. The experiments were all 

programmed and run using the RSVP Experimental Control Software (Williams 

& Tarr, 2001).

All images and text in the experiments were displayed at 640x480 pixels of 

resolution. A sticker was placed over the V  and ‘m’ keys on each keyboard. 

The sticker over the V  key stated ‘diff and the sticker over the Tn’ key stated 

‘same’. Observers used the V  (‘diff’) key to indicate that the face presented 

during the trial was a different identity from the face shown during training. 

Conversely, they used the ‘m’ (‘same’) key to specify that the face shown during 

the trial was the same as the identity learned during training.

The face images used in all of the trials were 396 images (370 images were 

used in Experiment 3) taken from a database of 1800 images of 100 faces (50
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males and 50 females) produced at the Max-Planck Institute for Biological 

Cybernetics under the supervision of Heinrich Bulthoff. The images were 

collected as 3D head models and associated color maps using a Cyberware 3D 

scanner and then modified using a morphing algorithm developed at the Max- 

Planck Institute. The database is available from the Institute website 

(http://faces.kvb. tuebinaen.moa. deA. The images were created such that each 

face had 18 different illumination conditions associated with it. The lighting 

directions changed in 10° increments both horizontally and vertically. The 

experiments presented here used 16 of the possible 18 illumination conditions, 

except for Experiment 3, which used 15 lighting conditions. Two of the lighting 

directions were used during training with the others shown during testing. 

Sixteen individual faces were used as targets (8 male and 8 female) and 10 

individual faces were used as distracters. An amalgamation of randomly sized 

and positioned face pieces was used as a masking stimulus. Unless otherwise 

noted, the faces were presented in an upright orientation, i.e., eyes above 

mouth. The faces in the images were also looking to the left (the right of the 

computer screen as the image was shown). The orientation of the face was 

approximately 10° off the center of the camera axis. Examples of the stimuli are 

shown in Figure 13.

Procedure

For each experiment, observers were randomly assigned to one of six 

groups. All groups received the same conditions but in different orders. In each 

group, stimulus images were presented in three 20-minute sessions. Self­
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regulated breaks were provided in between the sessions. Observers performed 

five to six sets of randomized trials per session. Each set of trials consisted of 

two training images followed by 84 test images. Of these 84 images, 14 

corresponded to the target (previously trained face) and 70 were distracters. 

Observers viewed the two training images at the beginning of each set of trials 

for 15 seconds each with a 1 second blank between the two images. The order 

of the two lighting directions represented in the images was randomized. The 

faces were illuminated from one of two directions, depending on the 

experiment. Observers were told to study the images of the face carefully 

because they would “be asked to identify the face in the next phase.” The 

training procedure for Experiment 1 is illustrated in Figure 13.

Figure 13. Example of the training sequence in Experiment 1. Each of the two training images 
was displayed for 15 seconds separated by a 1 second blank. The order of presentation of the 
two images was randomized. The numbers in parentheses represent the horizontal and vertical 
displacement of lighting on the face from the center of the image.
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For the testing portion of the experiment, observers were instructed to 

respond as to whether the test image was that of the face previously seen 

during training, or a different face. Each test trial started with a 500 msec 

fixation cross in the middle of the screen, followed by the stimulus for 150 

msec, the mask for 500 msec, and then a blank interval for 1000 msec before 

the beginning of the next trial. No feedback was provided during the test trials. 

This testing procedure is illustrated in Figure 14.

Figure 14. The test trials started with a fixation cross in the center of the screen displayed for 
500 msec. The centered test image then was displayed for 150 msec. The test image shown 
has lighting rendered at -2 0 ° on the horizontal and 10° on the vertical axis. A mask was 
displayed after the test image for 500 msec. The same mask was shown across all trials and all 
observers. A 1 second blank screen followed each test trial.

In all of our experiments, two lighting conditions were used for training on 

either side of the object to approximate the two different viewpoints that Bulthoff 

and Edelman (1992) used in their study of viewpoint. Instead of using 15° 

increments between lighting directions, as they did with their viewpoints, we

Fixate Test Image
500 msec 150 msec

Mask 
500 msec

- ►
ITI 

1 sec

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

66

used 10° increments between lighting directions. We also varied the lighting 

directions in the EXTRA condition in two directions (away from both trained 

illuminations) instead of just the near-frontal direction. While this was a 

departure from their method, it provided a measure of performance from two 

training points (either separately or together), instead of only one. However, a 

disadvantage of this method was that we lost power in our analysis of the effect 

of distance from training, since we had fewer distances over which to perform 

the analysis.

Experiment 1

The present experiment investigated whether learning faces under a specific 

lighting direction affected the recognition of the same faces under different 

directions. These studies complement those reported in Chapter 2, but differ in 

a significant way. The purpose of this experiment, and those that follow, was to 

examine the underlying object representations used for object recognition with 

respect to lighting, given that interpolation seems to be needed to achieve good 

object recognition, as described by Bulthoff and Edelman (1992). The 

experiments in Chapter 1 mainly tried to confirm if human object recognition ad 

a reasonable computer vision model for handling object recognition under 

varying illumination were lighting dependent and, if so, to see how the behavior 

of the two vision systems was similar regarding specific lighting directions.

As such, the present experiments were based on studies of viewpoint- 

dependency in object recognition run by Bulthoff and Edelman (1992). As in
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their earlier work with viewpoint, the lighting directions (rather than viewpoint) 

used during testing were grouped into one of three conditions: 1) lighting 

positioned between the two trained illumination directions (INTER); 2) lighting 

positioned outside of the two trained lighting directions (EXTRA); 3) lighting 

orthogonal to the axis defined by the two trained illumination directions 

(ORTHO). In this experiment, the lights in the ORTHO condition were oriented 

along the vertical axis of the faces.

Methods

The training illuminations were situated at (10°, 10°) and (50°, 10°). The first 

number in the parentheses is the latitude and the second number is the 

longitude on the lighting sphere. All of the lighting directions that varied 

horizontally (longitudinally) were situated on the +10° latitude of the lighting 

sphere. During the test trials, 14 other lighting directions were shown. The 

range of the test lighting directions spanned from -20° to 70° on the horizontal 

and -20° to 40° on the vertical axes of the illumination space. These lighting 

directions were grouped according to their positions relative to the training 

illumination directions. The INTER condition consisted of lighting between the 

two trained lighting directions. Test illuminations outside of the trained 

illuminations were part of the EXTRA condition. Illumination directions, 

orthogonal to the axis defined by the two trained lighting directions, were 

grouped in the ORTHO condition. An illustration of this is shown in Figure 15. 

The axis defined by the lighting directions in the ORTHO condition always
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intersected one of the training illumination directions. In this experiment, the 

ORTHO condition intersected the (10°, 10°) trained lighting direction.

Figure 15. A schematic of the lighting sphere used in Experiment 1 showing the relative 
positions of the testing conditions to the training illuminations. The dots indicate the trained 
lighting directions. The conditions in which the test illumination directions were grouped are 
shown: 1) lighting between the two training conditions (INTER); 2) lighting outside of the trained 
lighting directions (EXTRA); 3) lighting directions orthogonal to the axis defined by the training 
illuminations (ORTHO).

Results and Discussion

For all of the test images, the lighting coordinates for each image were 

recorded, and the minimum Euclidean distance from the nearest trained 

illumination direction to that tested coordinate was computed, as well as the 

distance from the test illumination to the near-frontal (10°, 10°) training 

condition. The dependent variable was mean percent correct recognition
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calculated as the ratio of correct old/new identifications to the total number of 

test trials for a particular individual trained face. Although test trials were timed- 

out if no response was made within three seconds, subjects responded to more 

than 95% of the total trials.

With two factors in this within-subjects design (lighting condition and lighting 

direction), the most logical analysis would be the two-way analysis of variance 

(ANOVA). However, this analysis is not possible with this data set due to an 

unequal number of levels in one of the factors. The number of lighting directions 

within the three conditions (INTER, EXTRA, ORTHO) is not equal. No matter 

which training directions are used in order to calculate the minimum distance of 

each test illumination direction from training, there were always an unequal 

number of lighting directions per condition. Due to this inequity, a two-way 

within-subjects ANOVA was unfeasible. Instead, we opted to perform several 

one-way within-subject ANOVAs to discover the main effects of condition and 

lighting direction on recognition performance separately. Where necessary in 

analyses with more than one degree-of-freedom in the numerator, the 

Greenhouse-Geisser (1959) correction was used and is denoted by reporting 

the epsilon (e ) correction value with the F statistic.

The main effect of lighting condition (INTER, EXTRA, ORTHO) was 

statistically significant with F{2, 34) = 6.087, p < 0.01, e = 0.897. This result is 

shown in Figure 16. As the graph illustrates, the majority of the effect is present 

in the EXTRA condition. While a decrease in performance was expected for the 

ORTHO condition, performance here was on par with the INTER lighting
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condition. While this may seem unusual given the orientation of the lighting 

directions to the trained lighting directions, this result is likely due to the fact that 

lighting from above is typically seen on faces in the real world. However, when 

the lighting directions in the ORTHO condition were separated out according to 

position above or below the faces, there was no clear preference for lighting 

above the faces in the recognition task. In fact, performance for lighting 

directions below the face was better on average, as shown in Figure 17. 

However, the difference between the two groups (above and below) in the one­

way within-subjects ANOVA was not significant (F= 2.924, ns).
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Figure 16. The effect of illumination condition on recognition performance in Experiment 1. The 
INTER condition includes lighting directions between the training illuminations. Lighting 
directions outside of the two training directions are in the EXTRA condition. The ORTHO 
condition contains lighting directions orthogonal to the axis defined by the training illuminations, 
which in this experiment are oriented vertically on the lighting sphere. Error bars are the within- 
subject standard error of the mean.
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Figure 17. Recognition performance as a function of the lighting directions in the ORTHO 
condition for Experiment 1. The first number in the parentheses corresponds to horizontal 
position on the lighting sphere while the second number denotes vertical position (in degrees). 
The lighting coordinates to the right of the graph lie above the ( I f f ,  i f f )  training illumination, 
while those coordinates to the left lie below the training illumination. Recognition performance is 
better when observers viewed images with lighting below the face than when viewing faces with 
lighting positioned above.

The distance of the test lighting directions from training were calculated in 

two ways. In the first instance, the minimum Euclidean distance from either of 

the two training illuminations was found. Using this measure, the INTER 

condition contains two distances (10° and 20°), while the EXTRA and ORTHO 

conditions both have three associated distances (10°, 20°, and 30°). Looking at 

recognition performance within each lighting condition across the distances 

from either training point, the only significant differences occurred within the 

ORTHO condition (F  = 3.628, p < 0.05, e = 0.954). However, this result was 

misleading because the effects of deviating from both of the training points are 

grouped together.
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Figure 18. Recognition performance as a function of the tested illumination directions. The 
illumination directions on the x-axis are labeled as horizontal and vertical coordinates (in 
degrees) on the lighting sphere. The bolded labels (and lines) mark the INTER and EXTRA 
conditions as shown. The two trained lighting directions are labeled with TRAIN."

As Figure 18 shows, as the lighting in the test images diverges from the two 

training points, recognition performance decreases, especially for the test 

illuminations closest to the (50°, 10°) training point. There are two items to note 

here: 1) recognition performance for the (40°, 10°) illumination direction (10° 

from the training point with extreme lighting, but in the INTER condition) is 

excellent; 2) performance for the (60°, 10°) lighting direction (also 10° from the 

training point with extreme lighting, but in the EXTRA condition) is poor. While 

both of these test illuminations are only 10° from the same training point, 

observers’ performance while viewing them was drastically different. The 

reason for this dichotomous behavior is probably that the observers’ lighting 

representations for the faces was influenced by their extensive prior knowledge
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concerning the relationship of lighting on human faces, i.e., observers were 

more used to seeing faces with lighting close to frontal.

Grouping the distances from the training points between the three lighting 

conditions resulted in significant differences between the three distances, 10°, 

20°, and 30° (F(2, 34) = 3.689, p < 0.05, e = 0.973), and a significant 

decreasing linear trend with increasing distance from either training point (F(1, 

17) = 6.209, p < 0.05). By grouping the three lighting conditions, the overall 

effect of increasing the illumination angle on the faces away from the training 

points is seen more clearly (see Figure 19).
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Figure 19. Recognition performance as lighting deviated from either training point in Experiment 
1. The distances are averaged over all three of the lighting conditions (INTER, EXTRA, and 
ORTHO).

When measuring the minimum distance of the lighting direction in the test 

trials from the near-frontal (10°, 10°) training illumination, the simple effect of
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distance on performance was only seen in the lighting directions associated 

with the ORTHO condition (10°, 20°, 30°), F{2, 34) = 3.628, p < 0.05, e = 0.954. 

A significant linear trend also was found across the three lighting directions for 

the ORTHO condition, F(1,17) = 6.772, p < 0.05. This trend suggested that the 

decrease in performance with increasing eccentricity from the trained 

illuminations might also exist in the other conditions (i.e., INTER and EXTRA) if 

a more powerful manipulation were used. While there is a trend towards 

decreasing performance with increasing eccentricity from training in the lighting 

directions of the EXTRA testing condition, this trend did not reach statistical 

significance.

When the test illumination directions are averaged over the test conditions, 

five lighting directions emerge: 10°, 20°, 30°, 50°, and 60°. Figure 20 shows 

how these lighting deviations affect recognition of the images. Performing a 

one-way within-subjects ANOVA, the effect of increasing the distance of the 

test lighting direction from the (10°, 10°) trained lighting direction on recognition 

performance was significant, F{4, 68) = 3.501, p < 0.05, e = 0.657. The linear 

trend associated with these lighting directions also was significant, F(1, 17) = 

7.319, p < 0.05. Again, as was shown when the illumination angles for deviation 

from either training point were analyzed together, as the illumination angle 

increased from the near-frontal trained lighting direction, recognition 

performance for the faces decreased.

Performing the analysis on recognition performance for deviations in lighting 

direction either from both of the trained illumination directions or from the near-
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frontal (10°, 10°) trained lighting direction seemed logical. Measuring from 

either trained illumination allowed for inferring how well observers were able to 

build a representation of the lighting model for the observed faces. Likewise, 

measuring from the near-frontal (10°, 10°) trained lighting direction also 

incorporated the integration of information with regards to lighting between the 

two training views (how could it not?) but with the additional parameter of using 

a usual view of lighting on the face (near-frontal) as the baseline for the 

measurement.
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Figure 20. Recognition performance as lighting deviated from the near-frontal (1CP, 1CP) training 
point in Experiment 1. The distances are grouped over all three of the lighting conditions 
(INTER, EXTRA, ORTHO).

The near-frontal (10°, 10°) trained lighting direction was the better measure 

of performance due to the larger range of distances that this measurement 

provided by increasing the distance between the given training condition and all
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test lighting directions. Results from the experiments presented in Chapter 2 

showed that observers who viewed near-frontal lighting on faces during training 

performed similarly to performance on the trained lighting directions, and to 

images with lighting that ranged from 15° to 30° in distance from the trained
t

illuminations. For distances greater than these, performance decreased 

dramatically. Using the near-frontal training point as the baseline for measuring 

test distance is also most similar to the technique employed by Bulthoff and 

Edelman (1992) in their study of viewpoint dependence, whose methods the 

present study is emulating in terms of lighting variation over objects. For 

completeness, lighting distances were also averaged with respect to the 

training condition with extreme lighting (50°, 10°). Using this metric, subject 

performance actually increased with increasing distance from the trained 

lighting direction. This result was probably due to the increase in lighting 

direction with respect to the trained direction (50°, 10°), i.e., the lighting in the 

images was actually approaching near-frontal lighting directions. This result is 

consistent with the results from Chapter 2, and other research, suggesting that 

the recognition of faces is easier with lighting that is typical (e.g., Johnston, Hill, 

& Carman, 1992; Tarr, Kersten, & Bulthoff, 1998). Since faces often are seen 

with frontal illumination, any lighting model of faces should include a robust 

representation of this illumination condition. The remaining experiments will use 

the near-frontal (10°, 10°) training point as the baseline for measuring 

recognition performance for the test stimuli.
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Because the responses of all of the subjects were close to ceiling, the 

significant differences found in several of the analyses may be due to artificially 

small variance. We believe that the effects between conditions are real and that 

with a more sensitive measure, the effects would become more pronounced.

Experiment 2

The results of the previous experiment show that the face recognition 

performance of observers is better when the test lighting directions are between 

the two trained lighting directions. These results suggest that interpolation 

between the trained illumination directions is a possible explanation for the 

good recognition performance of subjects in the INTER condition as compared 

to their performance in the EXTRA condition. If subjects were building a 

complete three-dimensional representation of the scene, i.e., the shape and 

reflectance of the face, and of the lighting parameters of the scene, i.e., 

encoding the image variability accounted for by changes in the lighting of the 

scene, performance should have been the same across the three illumination 

conditions. The results from the previous chapter suggest that observers may 

be able to encode the illumination variations across a scene (not including the 

strength or direction of the lighting, but rather the changes in the appearance of 

the image as the lighting in the scene changed), but may not accurately derive 

the shape and reflectance properties of the objects. The results of the previous 

experiment also suggest that the lighting directions that were orthogonal to the 

axis defined by the trained illumination conditions provided sufficient information
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for highly accurate recognition of the faces shown. While these results seem 

unusual when compared to the results of the Bulthoff and Edelman (1992) 

viewpoint-interpolation studies (in which the views in the ORTHO condition 

were the most difficult to recognize), viewing illuminations oriented along the 

vertical axes of faces is not unusual for observers in the real world.

The current experiment attempted to investigate the effects of inverting the 

faces in the training and test images on recognition. The images were inverted 

such that the faces were still turned in the same direction along the horizontal 

axis as in the previous experiment, but upside-down. Past studies have shown 

that absent of any cues to illumination on a face, recognizing inverted faces, 

even well-known faces, is more difficult than recognizing the same faces upright 

(Hochberg & Galper, 1967; Yin, 1969, 1970; Valentine, 1988). This suggested 

that inverting the face somehow affected the ability of a subject to extract the 

necessary geometric information about the features on the face to accurately 

identify the person. By inverting the faces and the lighting on the faces, the 

results of this experiment should indicate whether changing the geometry of the 

faces changes how the illumination algorithms use interpolation to achieve 

adequate recognition of the faces.

Methods

This experiment was identical to Experiment 1 with the exception that the 

stimuli were all inverted so that the faces were upside-down, i.e., eyes below 

mouth, but not rotated. This resulted in the faces looking in the same direction 

as in the images in Experiment 1. The lighting on the faces followed the
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orientation of the faces, so that a face that was lit from above normally was lit 

from below when inverted and vice versa. The training lighting directions again 

were situated at (10°, 10°) and (50°, 10°) and 14 lighting directions comprised 

the testing stimuli, as in Experiment 1.

Results and Discussion

The results from Experiment 1 suggested using the near-frontal (10°, 10°) 

training point as the best baseline for measuring the minimum Euclidean 

distance of the test lighting directions from training to measure recognition 

performance. Again, the dependent variable was the mean percent correct 

recognition for each illumination direction on the lighting sphere. This measure 

was calculated as the ratio of correct recognition to the total number of test 

trials for each of the 14 lighting directions. For instance, for images with lighting 

at (30°, 10°), the distance from the near-frontal training point was 20°. The 

mean percent correct recognition for a particular lighting direction was the total 

number of correct recognition trials for that illumination divided by the total 

number of test trials. As well as calculating the mean percent correct 

recognition for distances deviating from the near-frontal training point, analyses 

also were performed on the responses grouped according to the three lighting 

conditions as outlined before: INTER, EXTRA, ORTHO. To reiterate what test 

lighting directions comprised these conditions: 1) the INTER condition consisted 

of those test lighting directions between the two training points; test illumination 

directions outside of the training points were in the EXTRA condition; 3) the 

ORTHO condition contained lighting angles orthogonal to the lighting axis
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defined by the two training points; in this case, an axis vertical to the 10° 

horizontal axis. Since, all subjects responded to more than 99% of the total 

trials, no subjects were used in the analyses. As in the previous experiment, for 

analyses with more than one degree-of-freedom in the numerator, the 

Greenhouse-Geisser (1959) correction was used and is denoted by reporting 

the epsilon (e) correction value with the F statistic.

The first result that can be inferred from Figure 21 is that the overall mean 

recognition performance (83.43%) is down from that of Experiment 1 (92.67%). 

One explanation for this overall decrease in recognition performance is the 

“inverted face” effect. This principle stems from several studies that found that 

upside-down faces were more difficult to recognize than upright faces 

(Hochberg & Galper, 1967; Yin, 1969, 1970; Valentine, 1988). However, these 

results did not take into account the possible interaction of lighting on the 

inverted faces. Several recent studies have shown that lighting direction (above 

or below the face) can interact with the effects of face inversion in recognition or 

classification tasks (Johnston, Hill, & Carmen, 1992; Enns & Shore, 1997). 

However, this interaction does not occur when the task is specific identification 

of a face, i.e., naming the given face using one of several choices (Enns & 

Shore, 1997).

As Figure 21 illustrates, recognition performance in the EXTRA lighting 

condition was significantly worse than in the other two lighting conditions (F(2, 

46) = 3.88, p < 0.05, e = 0.74). The figure also shows, supported by subsequent 

analysis, that observers’ recognition performance in the INTER and ORTHO
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conditions were similar (F(1, 23) = 0.13, ns). Since no difference between the 

INTER and ORTHO lighting conditions in Experiment 1 was observed, no 

differences were anticipated in this experiment since vertically-oriented lighting 

did not seem to be an unusual condition on human faces.
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Figure 21. The effect of illumination condition on recognition performance in Experiment 2. As 
observed in Experiment 1, the EXTRA condition is significantly different than the other two 
illumination conditions (F(2, 46) =  3.88, p < 0.05, e = 0.74). Error bars represent the within- 
subject standard error of the mean.

Subsequent to the results of previous studies (Johnston et al., 1992; Enns & 

Shore, 1997), differences within the ORTHO condition (i.e., between faces that 

were chin-lit and faces that were brow-lit) were expected. Since the lighting 

followed the inversion of the faces, images containing lighting from below in 

Experiment 1 contained chin-lit lighting in this experiment; likewise, lighting from 

above in Experiment 1 is referred to as brow-lit in this experiment.

INTER EXTRA ORTHO

I l l u m i n a t i o n  c o n d i t i o n s
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While separating lighting above and below the face did not result in any 

significant differences in recognition performance in Experiment 1, differences 

between these groups were expected in this experiment given previous results 

in other studies. The differences in performance were analyzed between brow- 

lit and chin-lit faces using a one-way within-subjects factorial design, however, 

no differences in recognition performance were found between the two 

orientations of lighting (F =  0.42, ns). While no differences were found between 

chin-lit and brow-lit faces, there was still a trend within each condition for 

decreasing performance with increasing eccentricity from the near-frontal 

training point (see Figure 22).

The results of this experiment are not consistent with previous studies that 

looked at the effect of lighting on inverted faces; the results of this experiment 

do not show differential effects for faces that are chin-lit versus faces that are 

brow-lit. There are several possible reasons for the differences between this 

experiment and the studies that have found differences between both upright 

and inverted brow-lit and chin-lit faces. One argument is that the previous 

studies relied too heavily on the observers’ memories (Johnston et al., 1992) of 

previously seen individuals, which were not controlled for by the experimenters. 

Also, while class-level knowledge for all faces has a bias for lighting from above 

(the reason you might get differences between lighting from above and below), 

training on specific illumination conditions might remove or override this class- 

based lighting bias. This influence of specific trained lighting directions 

suggests that the internal representations may be less categorical and more
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specified for certain lighting directions. The bias for class-level knowledge also 

may be diminished through training on specific faces. The Illumination Cone 

(1C) model constructs a representation for each face on which the model is 

trained. By training on specific faces, the model removes any class knowledge 

bias that might interfere with the recognition of the desired faces, but this 

strength of the model prevents any generalization to other instances within the 

class, i.e., faces that were not seen during training. Humans do not suffer from 

this weakness, while they still might use mechanisms that are similar to the 1C 

model.
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Figure 22. Recognition performance as a function of the lighting directions in the ORTHO  
condition in Experiment 2. Lighting coordinates to the right of the graph represent lighting 
directions that light the brow of the face while those to the left represent lighting directions that 
light the chin of the face. The error bars represent the within-subject standard error of the mean.

As stated previously, the minimum distance of each test lighting direction 

from the near-frontal (10°, 10°) training point was calculated. This distance was

(10.40) (10.30) (10.20) Train (10.0) (10.-10) (10.-20)
Brow Chin

I l l u m i n a t i o n  d i r a c t i o n s  ( d e g r e e s )
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used to determine mean percent correct recognition performance. Using the 

near-frontal training point as the baseline for measuring lighting distance from 

training resulted in five distance “bins”: 10°, 20°, 30°, 50°, 60° (no 40° bin 

exists, as it would contain the other training point).

The simple effect of lighting distance on correct recognition is only 

significant between the five lighting directions associated with the EXTRA 

condition (F(4, 92) = 4.717, p < 0.01, e = 0.626). A significant linear trend also 

exists between these lighting directions (F(1, 23) = 12.263, p < 0.01). While 

there is a trend towards decreasing performance with increasing eccentricity 

from training in the lighting directions of the INTER and ORTHO illumination 

conditions, these trends do not reach statistical significance.

Averaging over the three test conditions (INTER, EXTRA, and ORTHO), five 

lighting directions emerge: 10°, 20°, 30°, 50°, and 60°. Figure 23 shows how 

these lighting deviations affect recognition of the faces. As the figure illustrates, 

increasing the distance of the test lighting direction from the (10°, 10°) trained 

lighting direction caused a significant decrease in observers’ recognition 

performance (F(4, 92) = 6.391, p < 0.01, e = 0.562). Figure 23 also shows a 

significant linear trend associated with these lighting directions (F(1, 23) = 

11.943, p < 0.01). Again, as was shown in Experiment 1, as the distance of the 

illumination in the test images increased from the near-frontal trained lighting 

direction, recognition performance for the faces suffered.
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Figure 23. Recognition performance as lighting deviated from the near-frontal (1 (f, 1 (f) training 
point in Experiment 2. The distances are grouped overall three of the lighting conditions.

Experiment 3

In order to reduce the influence of any class-based knowledge on the part of 

the observers when viewing lighting directions in the ORTHO condition, the 

lighting axes were flipped. That is, instead of training on the horizontal axis of 

the lighting sphere and testing the ORTHO condition on the vertical axis, these 

conditions were switched. Since the results in the previous two experiments 

suggested that the good recognition performance in the ORTHO condition was 

probably due to the influence of class-level knowledge of lighting on the vertical 

axis of the face (as typically seen in the real world since lighting is mostly above 

the head), reduced performance in the ORTHO condition was expected when 

switching the axis of training to the vertical axis; the ORTHO condition would
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coincide with the horizontal axis across the face. Since the previous 

experiments also suggested that extrapolating to lighting directions outside of 

the trained illumination directions was difficult, poor recognition performance in 

the EXTRA lighting condition was again expected.

Methods

In this experiment, the orientation of the lighting was switched. This meant 

that the trained lighting directions were oriented vertically with respect to the 

lighting sphere, where in the past two experiments, the axis of training was 

horizontal relative to the lighting sphere. In this case, the two training 

illumination points were (10°, 30°) and (10°, -10°). Figure 24 illustrates the 

positions of the training points and the three lighting conditions.

As shown in Figure 24, training along a vertical axis flips the three groups of 

lighting conditions. For this experiment, the lighting directions in the INTER 

condition still were positioned between the two training points, but now along 

the 10° vertical axis on the lighting sphere. As well, the illuminations in the 

EXTRA condition were oriented vertically. Lighting directions in the ORTHO 

condition, corresponding to lighting directions on an axis orthogonal to the axis 

of training, were moved to the 10° horizontal axis of the lighting sphere.

Unlike the ORTHO condition in Experiments 1 and 2, the lighting directions 

in the ORTHO condition in this experiment were not on the same axis as one of 

the trained lighting directions. Instead, due to the limitations of the stimulus set, 

the ORTHO condition in this experiment contained lighting directions in the 

INTER condition of Experiments 1 and 2. In other words, the illumination angles
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in the ORTHO condition laid on the horizontal meridian 10° above the equator 

of the lighting sphere. This meant that the axis that the lighting directions in the 

ORTHO condition were on was 20° (minimally) from either of the training points.

Figure 24. The lighting sphere used in Experiment 3 showing the relative positions of the testing 
conditions with respect to the trained illumination directions. The dots indicate the trained 
lighting directions. The conditions in which the test illumination directions were grouped are 
shown: 1) lighting between the two training conditions (INTER); 2) lighting outside of the trained 
lighting directions (EXTRA); 3) lighting directions orthogonal to the axis defined by the training 
illuminations (ORTHO).

Results and Discussion

Again, the lighting coordinates for each image were recorded and the 

minimum Euclidean distance from the near-frontal trained illumination condition 

to that coordinate was computed. In this experiment, the near-frontal training 

point was located at (10°, -10°) on the lighting sphere. The dependent variable
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was again mean percent correct recognition calculated as the ratio of correct 

identifications to the total number of test trials for a particular individual trained 

face. Although test trials were timed-out after waiting for a response for three 

seconds, subjects responded to more than 96.8% of the total trials.

As in the last two experiments, several one-way within-subject ANOVAs 

were analyzed, instead of the two-way analysis of variance, due to an unequal 

number of levels in the conditions. Where necessary in analyses with more than 

one degree-of-freedom in the numerator, the Greenhouse-Geisser (1959) 

correction was used and is denoted by reporting the epsilon (e) correction value 

with the F statistic.

As Figure 25 illustrates, recognition performance between the three lighting 

conditions showed significant differences (F(2, 36) = 4.474, p < 0.05, e = 0.906). 

However, the pattern of results was unlike the patterns seen in the two previous 

experiments. The observers’ recognition performance in each of the last two 

experiments was similar between the INTER and ORTHO lighting conditions. 

Also, as previously seen in the other experiments, there was a significant 

difference between the INTER and EXTRA lighting conditions, which was 

expected, given the ease with which observers had previously used lighting 

interpolation (F(1, 18) = 7.453, p < 0.05). As shown in Figure 25, recognition 

performance in this experiment was different between the INTER and ORTHO 

conditions (F(1, 18) = 6.336, p < 0.05). The results of the last two experiments 

also displayed differences between the EXTRA and ORTHO lighting conditions. 

With a decrease in recognition performance, in this experiment, with lighting
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directions in the ORTHO condition, observers’ performance in recognizing 

faces with lighting conditions from these two lighting conditions was the same 

(F(1, 18) = 0.577, ns).
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Figure 25. The effect of illumination condition on recognition performance in Experiment 3. 
Recognition performance in the INTER condition was significantly different from performance in 
the other two illumination conditions. Error bars represent the within-subject standard error of 
the mean.

There are two potential reasons for a decrease in performance in the 

ORTHO condition in this experiment, although performance was equal to the 

INTER condition in the last two experiments: 1) it was harder to extrapolate the 

effects of lighting on the geometry of the faces when the lighting directions were 

not coincidental to one of the trained illumination points; 2) the representation of 

lighting on the faces was not as well defined with training in the vertical
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dimension as it was with training in the horizontal dimension, i.e., the lighting 

representation built using the trained vertical lighting directions was poor.

Since the EXTRA condition in this experiment was the ORTHO condition in 

the previous two experiments, one might expect that recognition performance in 

this condition might be pretty good, considering that performance in this 

condition was good in the last two experiments. However, that level of 

recognition performance was seen with trained lighting directions on the 

horizontal axis. If observers were merely using class-level knowledge about the 

role of lighting on faces in this experiment, then one might not expect a drop-off 

in recognition performance. The decrease in performance here suggests that 

observers used the information provided by the trained lighting directions to 

construct a representation of the faces, instead of using any class-level 

knowledge about faces. The fact that the recognition performance was still high 

overall suggests that observers were able to fall back on some class-level 

knowledge of lighting on faces when the representation provided by the training 

conditions failed to provide adequate information for recognition. However, 

while this class-level knowledge seemed to help subjects in the last two 

experiments, it seems to be failing them in this context.

There are several possibilities for this performance decrease in the ORTHO 

condition in this experiment. It might be that recognition using lighting outside of 

the training points is always bad because observers have a difficult time 

extrapolating from one lighting condition to others, but an easy time 

interpolating between two illumination directions. This would account for the
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poor recognition performance in the EXTRA and ORTHO conditions. However, 

the EXTRA condition contained illuminations that were oriented along the 

vertical axis of the face. By previous accounts concerning the use of class-level 

information, and the typicality of vertical illumination conditions on the human 

face, these lighting directions should not have caused as much difficulty with 

the subsequent recognition task. In fact, one would think that training with 

lighting on the vertical axis of the faces would have enhanced the information 

already present concerning vertically oriented lighting; however, it did not. 

Why? In actuality, the performance for the two lighting directions 10° from either 

training point improved from the performance for those same lighting directions 

in Experiment 1. The recognition performance for lighting at (10°, 40°) went 

from 91.9% in Experiment 1 to 92.16% in this experiment. Likewise, 

performance for the (10°, -20°) illumination point improved from 92.77% in 

Experiment 1 to 93.2% in this experiment. The worst performance in the 

EXTRA condition comes from images with lighting at (10°, 50°) and (10°, -30°). 

These extreme lighting directions create severe shadows on the faces in the 

images, require extrapolation from only one reference point (one of the two 

training illuminations), and are quite distant from both of the training points. All 

of these factors combined most likely prevented observers from correctly 

recognizing the faces under those lighting directions.

Even when the EXTRA condition was broken into two groups: lighting above 

the face (brow-lit) and lighting below the face (chin-lit), there was a difference 

between the two groups (F  = 6.488, p < 0.05). In fact, the recognition
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performance was better for the group with lighting directions below the face 

than for lighting directions above the face (see Figure 26). This is totally counter 

to any previous results that have found differences between the two groups 

(e.g., Johnston et al., 1992; Enns & Shore, 1997). The reason probably lies in 

the specificity of the representation of the faces created by the observers using 

the lighting conditions viewed during training, paired with the prior belief in 

lighting on faces being primarily frontal. The (10°, -10°) training lighting direction 

was only 10° below the point with frontal lighting relative to the faces. As the 

previous experiments in this study have shown, a 20° deviation from a near- 

frontal trained lighting direction usually was not sufficient to produce significant 

errors in recognition performance. This suggests that the chin-lit lighting 

directions in the EXTRA condition in this experiment should not have impaired 

recognition performance to a high degree. However, the brow-lit lighting 

directions in the EXTRA condition in this experiment were at least 50° away 

from the near-frontal trained illumination point, and therefore we expected more 

errors when trying to identify faces with these illumination conditions present. 

Indeed, these lighting directions did hamper correct recognition of the faces 

and, as stated, a significant difference between these lighting directions and the 

EXTRA “chin-lit" lighting directions was found.
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Figure 26. Recognition performance for the lighting directions in the EXTRA condition in 
Experiment 3. The distances were measured from the near-frontal (1(F, -1(F) training point. The 
images represented by the 1(F and 2(F distances contained faces with chin-lit illumination and 
the images represented by the 30° and 6<F distances contained faces with brow-lit lighting.

When the EXTRA condition was analyzed purely in terms of deviations from 

the near-frontal training point, a significant decrease in recognition performance 

with increasing eccentricity from the training point was found (F  = 6.942, p < 

0.01, £ = 0.843). The other two lighting conditions did not show any significant 

reductions in recognition performance with increasing distance from the near- 

frontal training point, as Figure 27 illustrates.
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Figure 27. Recognition performance for the lighting directions in the INTER and ORTHO 
conditions in Experiment 3. The distances are measured from the near-frontal (1 (f, -1 (f) 
training point. The error bars represent the within-subject standard error of the mean.

The distance measurements were also collapsed over the three illumination 

conditions from the near-frontal (10°, -10°) training point to get a sense of the 

overall effect of eccentricity from frontal illumination (see Figure 28). When the 

results were grouped in this way, an effect of distance from training on 

recognition performance was seen (F =  7.612, p < 0.01, e -  0.645). However, 

as the figure also shows, all of the effect was contained in the 60° distance from 

training. This distance included only one lighting direction, (10°, 50°), which was 

an extreme illumination in the ORTHO lighting condition (illumination from 

above the face). Observers exhibited the worst recognition performance while 

viewing images with this particular illumination direction, with a mean correct
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recognition rate of 89.69%. In fact, this mean recognition performance was 

1.1% worse than the performance in the next worst lighting direction, (-20°, 

10°), which was an extreme illumination in the EXTRA condition.
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Figure 28. Recognition performance for the lighting directions in the INTER and ORTHO 
conditions in Experiment 3. The distances are measured from the near-frontal (1(F, -1(F) 
training point. The error bars represent the within-subject standard error of the mean.

While the analyses using the near-frontal (10°, -10°) training point as a 

baseline was considered more informative as to the nature of observers’ 

performance with respect to lighting in the faces, overall performance as 

measured from either training point, (10°, -10°) and (10°, 30°), was also 

analyzed. As Figure 29 shows, there was no significant difference in recognition 

performance with increasing eccentricity from the trained lighting directions. 

However, a linear trend did exist for the decrease in recognition performance as
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the distance from either training point increased. This result provides further 

evidence for the use of a specific representation of the lighting on the faces 

based on the training observers received during the experiment. If a lighting 

model was not represented as part of the knowledge base of the faces, or if 

observers merely were utilizing a class-based lighting model based on previous 

experience recognizing faces, we would not expect to see differential 

performance as the lighting varied over the faces. The fact that a pattern exists 

for decreasing performance that is consistent with the previous studies in 

Chapter 2 is sufficient.
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Figure 29. Recognition performance as a function of distance from either of the trained lighting 
directions in Experiment 3. A significant linear trend exists between the distances (F  = 5.231, p 
< 0.05). The error bars represent the within-subject standard error of the mean.
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Discussion

The results from the experiments presented in Chapter 2 indicate that the 

human visual system has some sort of image-based representation for 

modeling lighting on faces. Furthermore, by using an identical methodology in 

testing human observers and the Illumination Cones (1C) computer vision model 

(Belhumeur & Kriegman, 1998), the results point to a possible algorithm for this 

lighting representation. Also, since the IC model predicts better recognition 

performance for unknown lighting directions surrounded by known lighting 

directions, the model exhibits behavior that is similar to models that use two- 

dimensional view interpolation to compensate for changes in object orientation 

(e.g., Poggio and Edelman, 1990). Given the similarity between the 

interpolation models for object viewpoint and the behavior of the Illumination 

Cones model, with respect to lighting directions near known illumination 

conditions, we expected that interpolation between known lighting conditions 

would hold as it does for viewpoint.

Using a methodology similar to that used by Bulthoff and Edelman (1992) in 

their study of viewpoint in object representations, we performed three 

experiments to investigate the role of interpolation in the representation of 

lighting direction in the human visual system. This set of experiments had two 

goals:

• Examine the specifics of how a model of illumination might function 

given the need to use interpolation in order to achieve adequate 

object recognition;
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• Determine whether object geometry and its relation to lighting 

direction affected how the illumination model is computed.

All of the experiments presented in this study showed results similar to 

those presented in Chapter 2. As the direction of lighting in the test images of 

the faces became more disparate from the lighting directions used during 

training (and, presumably, used to build a lighting model for the faces), 

performance for recognizing the individual faces decreased. This decrease in 

performance was more dramatic in the experiments of Chapter 2, but this is 

most likely due to the degree of variability in the lighting directions present in 

the stimuli of that set of experiments.

The results of this chapter suggest that including lighting parameters in high- 

level representations of faces is necessary to derive shape information and to 

constraint otherwise ambiguous scene information, such as is present in 

scenes with extreme lighting conditions. There are more comparisons than just 

those made with the results of the experiments of the previous chapter. 

Grouping the results of the present experiments, as Bulthoff and Edelman 

(1992) did in their study of object viewpoint and interpolation models, provides 

clues as to the use of interpolation in the algorithms used by the visual system 

to deal with variations in illumination conditions.

The results from Experiment 1 suggest that the visual system does seem to 

use interpolation between known illumination conditions in order to provide 

adequate face recognition. However, these results also show that, unlike the 

results dealing with view interpolation, lighting directions orthogonal to the axis
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of training provide enough information for good face recognition. This result is 

inconsistent with a system that only uses illumination interpolation for 

performing object recognition with varying lighting conditions. One suggestion 

for this result is that the familiarity with faces by the observers allowed them to 

use class-level knowledge concerning the interactions of vertical illuminants on 

faces to adequately perform the recognition tasks. This does suggest that a 

hierarchy of processing may exist with respect to lighting representations. 

When possible, the visual system will probably use specific knowledge of the 

faces to perform necessary recognition tasks. However, if the information 

derived from the image does not permit such specificity, then class-level 

knowledge will probably be used to try to compensate for the lack of 

information.

The results from Experiment 2 build on this idea of specificity first, class- 

level knowledge second, in terms of processing the image information through 

any high-level object representations. Inverting the images of the faces did not 

change the pattern of results from Experiment 1. The only difference between 

the two studies was due to the inverted-face effect, i.e., the overall recognition 

performance across all of the lighting conditions was diminished due to the 

inherent difficulty in identifying upside-down faces.

Changing the pattern of training on the lighting directions in Experiment 3 

provided results different than those found in the other two experiments. The 

EXTRA lighting condition, as predicted, led to the worst recognition 

performance by the observers. However, instead of the observers showing
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similar recognition performance for the INTER and ORTHO lighting conditions, 

the performance in the ORTHO condition was drastically reduced; in fact, the 

ORTHO and EXTRA conditions showed the same recognition performance.

The pattern of recognition performance shown in Experiment 3 is more 

similar to the pattern of results postulated by the view interpolation results of 

Bulthoff and Edelman (1992), and the results of Chapter 1, which suggest that 

the Illumination Cones (IC) model uses an algorithm similar to an interpolation 

mechanism. A possible reason for this pattern of results in Experiment 3, where 

the INTER condition exhibits better performance than the other two illumination 

conditions, is that the lighting directions used for training, on the vertical axis of 

the lighting sphere, did not allow observers to default to any expected class- 

level representation of lighting on the faces when they were unable to use the 

available information due to lighting.
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CHAPTER 4 

General Discussion

There is evidence for a model-based representation of illumination 

information in humans. Tarr, Kersten, and Bulthoff (1998) explored whether 

human object recognition was lighting invariant, in part, motivated by the result 

that cast shadows helped constrain the perceived three-dimensional layout of a 

scene (Kersten, Knill, Mamassian, & Bulthoff, 1996; Kersten, Mamassian, & 

Knill, 1997). They found that shadows are intrinsic to object representations -  

possibly because they provided information about the three-dimensional 

structure of an object or scene.

If object representations include the effects of lighting, then lighting context 

should influence recognition performance. For example, faces are a highly 

familiar object class typically seen with the lighting above and in front. 

Johnston, Hill, and Carman (1992) reported on the horror film effect that faces 

lit from below (unusual lighting) look very different than when lit from above. 

Braje et al. (1998) found that faces lit from one side were recognized more 

poorly when the light was moved to the opposite side, both with and without 

cast shadows; thus demonstrating a recognition advantage for a learned
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lighting direction. This pattern of lighting dependence during recognition 

provides some constraints on the computational algorithms in human vision, 

and allows us to compare these results to those of current computer vision 

models.

Recent computer vision models rely on two-dimensional image information -  

across multiple images -  to represent illumination variability. Of three versions 

of this general approach, only the Illumination Cones approach exhibits good 

recognition performance for faces over a variety of illumination conditions. 

Belhumeur and Kriegman (1998) proposed constructing a hypersurface, or 

ucone,n which represented the set of potential images for one face under all 

possible point light sources; thus representing the entire lighting space for that 

particular face. Under this model, multiple illumination cones are needed to 

represent many unique faces for correct identification; this is also the model’s 

weakness, in that generalization within a class of objects is impossible without 

some prior knowledge about the geometry of the object class. As shown in the 

results of the studies in Chapter 2, the IC model is robust to training on a variety 

of illumination directions, and exhibits behavior that suggests that part of the 

algorithm is interpolating between trained lighting directions to achieve good 

face recognition.

Several experiments investigated how humans performed under conditions 

of varying illumination conditions. Observers were trained to recognize faces 

with lighting configurations designed to elicit different mental representations of 

lighting in each instance. In the set of studies discussed in Chapter 2, observers
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were trained on various lighting directions that were either singular, close in 

proximity, or regularly spaced (as in the training set with lighting directions 

along the horizontal axis of the lighting sphere). These sets of trained lighting 

conditions ranged from frontal, or near-frontal, to lighting at the extreme sides of 

the faces. Across these different training conditions, the following results were 

obtained:

• Although the IC model exhibited higher accuracy than humans for the 

exact images shown in training, it often performed worse than 

humans for the same faces under new lighting directions.

• Humans were much better at generalizing from extreme lighting 

directions than was the IC model. On the other hand, recognition 

performance for subjects and the model was similar when 

generalizing from near-frontal lighting directions.

• Humans were able to perform at a more constant level with new 

illuminations distant from the training set when the training set was 

comprised of extreme lighting directions. In contrast, when the 

training set was comprised of near-frontal directions, lighting 

generalization fell off rapidly with distance from training images for 

human observers.

• When the training set was comprised of lighting directions along the 

horizontal meridian, humans were far better than the IC model at 

generalizing to test images arrayed vertically around this horizontal 

axis.
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Some of the above differences are inherent in the comparison made 

between the full vision system of humans and the extremely limited vision 

system implemented in the IC model. Moreover, although humans must 

recognize faces in the context of their familiarity with 1000’s of similar objects 

(in particular other faces), they may also use their knowledge of the general 

geometry of faces as a class to make inferences regarding the appearance of 

new faces under novel lighting directions (for a similar class-level mechanism 

for making inferences about novel viewpoints, see Tarr & Gauthier, 1998). 

These factors lead to the expectation that human observers should display both 

better generalizations across all unfamiliar illumination conditions and 

dramatically better generalization for lighting directions far from the training set, 

as compared to the IC model. At the same time, the fact that the IC model has 

few competitors for an individual face under the trained illumination conditions, 

while humans have 1000’s, leads the model to perform better than humans for 

the exact images used in training.

The second set of experiments presented in Chapter 3 used two well- 

separated lighting directions on either side of, or above and below, the faces as 

training sets. The purpose of these experiments was to investigate whether 

human observers exhibited the same tendency to perform better face 

recognition when the viewing conditions included faces with lighting directions 

that were between the two trained illumination conditions, which would 

necessitate the interpolation of the known lighting directions. Since the IC 

model showed results that were consistent with a mechanism that might use
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interpolation, the finding that human observers used lighting interpolation would 

provide further information concerning the mechanisms that humans use in a 

potential lighting representation. Across the three experiments, the following 

results were obtained:

•  Human observers again exhibited decreased performance for lighting 

directions distant from the trained illumination conditions

•  Lighting interpolation was exhibited by observers, but they also 

displayed the use of class-based knowledge for the effects of lighting 

on faces

• Observers seemed to use the specific learned lighting directions in 

their lighting representation, instead of a class-based representation

• When insufficient information was available in the image, observers 

fell back on their class-based lighting representations

The pattern of recognition performance shown in all three of the experiments 

suggests that the representation use by humans to compensate for changes in 

lighting across the scene might use an interpolation mechanism; one possible 

candidate for this model is the Illumination Cones (IC) model.

The results presented in Experiment 3 in Chapter 3 are the most similar to 

the pattern of results postulated by the view interpolation results of Bulthoff and 

Edelman (1992). A possible reason for this pattern, where the INTER condition 

exhibits better performance than the other two illumination conditions, is that 

the lighting directions used for training, in this case on the vertical axis of the
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lighting sphere, did not allow observers to default to any expected class-level 

representation of lighting on the faces.

Of interest in this work is not simply the relative performance of human 

subjects and computational models, but what assumptions are made in order to 

make such comparisons and the evaluation of these comparisons. To provide 

the most useful comparisons between human subjects and the IC model, the 

experimental procedures used in the human psychophysical experiments 

closely mimicked in those used in the execution of the IC model. However, the 

IC model in no way implements the large bulk of what we think of as vision. 

Therefore its output is in many ways derived under entirely different conditions 

from the data obtained with humans, who necessarily bring their entire visual 

system into play in recognizing faces. Thus, the IC model may be at somewhat 

of a disadvantage, yet it performs as well as or better than the human 

observers under some conditions. In large part, this performance may be due to 

the fact that the IC model only “knows” about a small subset of all possible 

images. In contrast, humans are equipped with a lifetime of experience and 

knowledge of 100,000’s of objects. This apparent disadvantage also has 

positive implications for human observers. Specifically, most humans are face 

experts, and thus have class-level knowledge regarding the appearance of 

faces in general. This knowledge allows them to rapidly learn and recognize 

entirely novel faces, as well as generalize from a single view of a face to an 

entirely new lighting (or viewpoint) context -  the idea being that other faces 

have been seen under the new conditions. In contrast, the IC model has no
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knowledge of faces beyond the training it receives and, therefore, can never 

generalize between individual faces.

These same issues arise in nearly every extant computer vision model that 

is compared to human data. Nearly all address only a small part of the “vision 

problem”; in contrast, the human observer applies a complete vision system 

that includes filtering, sophisticated mid-level organization, and a rich 

representational space (and years of learning). It would be a mistake to claim 

that a given method does any more than model one specific mechanism of 

human vision. In the case of the IC model, that mechanism is generalizing from 

known to unknown lighting conditions for a given image of an object. This 

mechanism is but one factor that mediates the overall performance of a larger 

vision system, but it may be the particular component that determines how 

performance modulates across lighting variation. Therefore, the patterns of 

generalization from known to unknown lighting conditions may be compared 

between the IC model and the human subjects. Similar comparisons are 

possible in many domains, so long as one is willing to make explicit the 

assumptions used in both the simulations with the computer vision model and 

the analogous psychophysical experiments. Indeed, it is argued that such 

comparisons ultimately improve both sides of the problem -  refining the 

algorithms used in computer vision implementations and constraining the space 

of solutions for explaining elements of human vision.

The results of the experiments presented in Chapters 2 and 3 indicate that 

important future study should involve extending the present methods to entirely
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novel object classes for which neither humans nor any computer vision model 

would have pre-existing knowledge since human subjects might have benefited 

from their prior experience with faces. Currently the IC model (as well as most 

other recognition models that address lighting variability) does not represent 

information about an object class -  rather a separate and unique illumination 

cone is constructed for each individual face. However, it is apparent that class- 

level knowledge about how illumination generically affects the appearance of 

members of a class is a desirable feature to incorporate into future models. 

More generally, this last point illustrates that a consideration of human visual 

abilities in the context of models drawn from computer vision is not a one-way 

street. Both approaches benefit from the comparison, and ultimately more 

robust computer vision systems, and better accounts of biological vision, will 

result.
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